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Abstract

In the context of a linear asset pricing model, we document a statistical limit to arbitrage

due to the fact that arbitrageurs are incapable of learning a large cross-section of alphas with

sufficient precision given a limited time span of data. Consequently, the optimal Sharpe ratio of

arbitrage portfolios developed under rational expectation in the classical arbitrage pricing theory

(APT) is overly exaggerated, even as the sample size increases and the investment opportunity

set expands. We derive the optimal Sharpe ratio achievable by any feasible arbitrage strategy,

and illustrate in a simple model how this Sharpe ratio varies with the strength and sparsity of

alpha signals, which characterize the difficulty of arbitrageurs’ learning problem. Furthermore,

we design an “all-weather” arbitrage strategy that achieves this optimal Sharpe ratio regardless

of the conditions of alpha signals. We also show how arbitrageurs can adopt multiple-testing,

Lasso, and Ridge methods to achieve optimality under distinct conditions of alpha signals,

respectively. Our empirical analysis of more than 50 years of monthly US individual equity

returns shows that all strategies we consider achieve a moderately low Sharpe ratio out of

sample, in spite of a considerably higher yet infeasible one, suggesting the empirical relevance

of the statistical limit of arbitrage and the empirical success of APT.
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1 Introduction

Most arbitrageurs in practice conduct some statistical analysis prior to the execution of investment

strategies. Nonetheless, the statistical limit is absent from the theory of limits to arbitrage. This

is partially because statistical challenges facing economic agents are often benign in the sense that

the statistical uncertainty can be safely ignored, provided a sufficiently large sample size, to the

extent that rational expectation retains its relevance, at least approximately. Nevertheless, in the

case of arbitrage pricing theory, arbitrageurs are presented with an expansive set of investment

opportunities. The scenario in which they can learn about the statistical properties of an increasing

number of assets with infinite precision is at best extreme.

We are interested in a more realistic scenario, where the sample size increases with and is even

outnumbered by the cross-section of investment opportunities.1 Because of this high-dimensionality

challenge, arbitrageurs in our setting are incapable of knowing the true alphas, even in certain

limiting experiments. In fact, only when the sample size is larger than or comparable to the dimen-

sionality of the investment opportunity sets can the assumption of rational expectation becomes

relevant. In otherwise more realistic limiting experiments, the learning effect induces a limit to

arbitrage.

To characterize the effect of learning, we assume that returns follow the same linear factor

model as in APT and that arbitrageurs in this model are only allowed to employ a feasible trading

strategy that relies on historical data to make inference on alpha signals. We derive the optimal

Sharpe ratio achievable by any feasible arbitrage trading strategies, which is strictly dominated by

the infeasible optimal Sharpe ratio in the rational expectation setting. This, in turn, provides a new

no-near-feasible-arbitrage condition that accounts for the statistical limit of learning.

The difficulty of the learning problem hinges on the data generating process (DGP) of alpha

signals. While our theory does not rely on specific cross-sectional distributions of alpha signals,

we use a simple model to demonstrate how the optimal Sharpe ratio varies with the strength and

sparsity of alphas. In accordance with our intuition, when alphas (signals) are strong and not too

rare relative to the dimensionality and the sample size, the inference problem is simply reduced

to the classical rational expectation result in the limit. Nevertheless, when alpha is weaker and

more rare, its inference becomes more challenging, inducing a substantial gap between the optimal

feasible Sharpe ratio and the classical infeasible limit.

Furthermore, we demonstrate how arbitrageurs can construct a feasible trading strategy that

achieves the theoretically optimal Sharpe ratio, uniformly over DGPs of alphas, regardless of the

strength and sparsity of alphas. A uniformly valid trading strategy is desirable because arbitrageurs

do not know which DGP is a correct description of the observed data. This result also suggests that

the aforementioned optimal Sharpe ratio bound is in fact sharp. The optimal strategy is designed

1In fact, the available sample size in most asset pricing settings is rather limited compared to the number of assets
in the investment universe. Tens of years of monthly time series are often seen in the literature, and the sample size
is at best in the order of hundreds. In contrast, there are thousands of stocks in US markets alone, not to mention
opportunities in global markets or alternative asset classes.
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by carefully examining the empirical distribution of alpha estimates and assigning weights based

on their relative magnitudes and associated uncertainty. Significant alpha estimates are relatively

straightforward to deal with, whose weights are proportional to their signal strength. The weaker

alphas are more difficult to exploit, and simply ignoring them would lead to a suboptimal trading

strategy.

We also propose an estimator of the infeasible Sharpe ratio, which can be interpreted as the

perceived Sharpe ratio by rational expectation investors. While this Sharpe ratio can be estimated,

it cannot be realized by any portfolio with weights constructed using historical data.

Next, we examine alternative strategies that exploit multiple testing, shrinkage, and selection

techniques to build arbitrage portfolios. With alphas estimated from cross-sectional regressions, one

strategy adopts a multiple-testing (BH) procedure as in Benjamini and Hochberg (1995) on the alpha

t-statistics to guard against potential false discoveries among significant alphas, before building the

optimal portfolio weights using selected alphas. Other strategies use either Lasso or Ridge penalties

to regularize the portfolio weights based on alpha estimates. Such strategies amount to imposing

a prior distribution on the alphas. We illustrate with a simple example that these strategies can

achieve optimal Sharpe ratio under distinct alpha assumptions. In particular, BH procedure achieves

optimal performance only when few true alpha signals are substantially strong. Its failure to achieve

optimality is precisely due to its conservativeness against the less potent alphas. In contrast, the

ridge approach is equivalent to the plain cross-sectional regression based alphas, which can achieve

optimality when almost all true alphas are either uniformly strong or uniformly weak. The Lasso

approach attempts to strike a balance between the aforementioned two methods, almost achieving

the theoretically optimal Sharpe ratio.

Finally, we demonstrate the empirical implications of the statistical limits of arbitrage by ex-

amining 56 years of monthly individual equity returns in US stock market from 1965 to 2020. The

average number of stocks over this period exceeds 4000. We construct residuals via cross-sectional re-

gressions from a multi-factor model that uses observed characteristics as betas. These characteristics

include market beta (Fama and MacBeth (1973)), size (Banz (1981)), operating profits/book equity

(Fama and French (2006)), book equity/market equity (Fama and French (2006)), asset growth

(Cooper et al. (2008)), momentum (Jegadeesh and Titman (1993)), short-term reversal (Jegadeesh

(1990)), industry momentum (Moskowitz and Grinblatt (1999)), illiquidity (Amihud (2002)), lever-

age (Bhandari (1988)), return seasonality (Heston and Sadka (2008)), sales growth (Lakonishok et al.

(1994)), accruals (Sloan (1996)), dividend yield (Litzenberger and Ramaswamy (1979)), tangibility

(Hahn and Lee (2009)), and idiosyncratic risk (Ang et al. (2006)), as well as 11 Global industry

Classification Standard (GICS) sectors. These characteristics and industry dummies capture similar

equity factors in the MSCI Barra model widely-used among practitioners.

A few interesting findings emerge. First, the cross-sectional R2s are rather low, with a time-series

average 9.01% over the sample period from 1965 to 2020. Our results are similar to existing estimates

from the literature, e.g., 7.8% average R2s from May 1964 to Dec 2009 reported in Lewellen (2015)

using 15 factors that largely overlap with ours, but lower than 12-14% over 1987 - 2016 reported in
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Gu et al. (2021) for latent factor models. The immediate implication of these numbers is that there

exists a considerable amount of idiosyncratic noise in the cross-section of individual equities, to the

extent that learning about alpha becomes an arduous statistical task.

Second, we plot the cross-sectional distribution of the t-statistics corresponding to alpha esti-

mates of all individual stocks based on their full record in our sample. Among 12,415 test statistics

we obtain, we find that only 4.69% (0.41%) of the t-statistics are greater than 2.0 (3.0) in absolute

values. No t-statistics are greater than 4.80 in magnitude. Even without controlling for multiple

testing, these estimates suggest that non-zero alphas are rather rare and weak.

Third, we find the optimal feasible arbitrage portfolio with different methods achieve a mod-

erately low annualized Sharpe ratio, about 0.5, whereas the perceived Sharpe ratios over time are

considerably higher – beyond 2.0 – for almost all sample periods. The perceived Sharpe ratio is what

investors could estimate in light of the classical arbitrage pricing theory, but it is not realizable by

constructing a feasible arbitrage portfolio. The large gap between realizable and perceived Sharpe

ratios suggests the empirical relevance of the statistical limit of arbitrage. Existing literature on

testing the APT focus on the perceived Sharpe ratio, which leads to more powerful rest statistics

and rejections of the APT. In contrast, we argue that the fact that the feasible Sharpe ratio is small

suggests the empirical success of APT.

Fourth, among all feasible strategies, the cross-sectional regression approach achieves the best

performance, followed by the uniformly valid optimal strategy we develop. This is not surprising

given that earlier empirical evidence suggests that alphas are rare and weak, so that the alpha

generating process squares well with assumptions that make cross-sectional regression approach

optimal. The BH approach performs the worst, because it is overly conservative that it eliminates

almost all weak signals, which other strategies exploit to outperform.

Our paper is built on a large strand of literature dating back to the arbitrage pricing theory

(APT) by Ross (1976), which was later refined by Huberman (1982), Chamberlain and Rothschild

(1983), and Ingersoll (1984). An important contribution from these papers is a powerful foundation

for asset pricing, which does not rely on assumptions on economic agents about their preferences

and beliefs such as those behind the CAPM. One purpose of our paper is to revisit the APT.

We show that the optimal Sharpe ratio discussed in the prior literature is overly exaggerated and

their no near-arbitrage condition can further be relaxed due to the incapability of arbitrageurs in

identifying investment opportunities with infinite precision. In this regard, our paper is also related

to another large strand of literature on the limit of arbitrage, see Gromb and Vayanos (2010) for a

comprehensive review. Complementary to the existing literature, the arbitrage limit in our setting

stems from statistical uncertainty, instead of being induced from risk, costs, frictions, and other

constraints rational expectation investors are facing.

Kozak et al. (2018) argue that the absence of near-arbitrage opportunities enforces the expected

returns to (approximately) line up with common factor covariances, even in a world in which belief

distortions affect asset prices. Our study instead focuses on the approximation error by common

factor covariances in their SDF, or to put it differently, the alpha component of asset returns in a
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reduced-form factor model. We derive a new Sharpe ratio bound on near-arbitrage opportunities

and provide a feasible trading strategy that optimally exploits these opportunities without exposure

to any factor risk. Another closely related paper to ours is Kim et al. (2020), which proposes a

characteristics-based factor model to construct arbitrage portfolios. Their model does not preclude

arbitrage opportunities with a theoretically infinite Sharpe ratio, whereas our framework rules out

such a possibility. Relatedly, Uppal and Zaffaroni (2018) propose a methodology to construct alpha

and beta portfolios without violation of the conventional near-arbitrage condition. Nonetheless, our

setting is considerably different in which alphas cannot possibly be recovered with certainty even

when the sample size is large.

Our paper is also related to the evolving literature on applications of statistical and machine

learning in asset pricing, and in particular on the topic of testing the APT, e.g., Gibbons et al.

(1989), Gagliardini et al. (2016), and Fan et al. (2015), as well as on testing for alphas, e.g., Barras

et al. (2010), Harvey and Liu (2020), and Giglio et al. (2021). The first literature focus on testing

a null that all alphas are equal to zero. This is certainly an interesting null hypothesis, but as we

emphasize in this paper, the APT does allow for alphas as long as they do not induce an explosive

arbitrage Sharpe ratio. The second literature focus on detecting strong alphas, in which widely

used multiple testing methods, such as the BH method by Benjamini and Hochberg (1995), or

its extensions can be applied to control the false discovery rate (FDR). In contrast, we allow for

rare and weak alpha signals such that any procedure aiming to control the FDR is overwhelmingly

conservative to the extent of no or few discoveries.2 Our objective here is not on model testing or

signal detection. Rather, we strive for the optimal economic performance of arbitrage portfolios.

We show that even if signals were so weak that they are undetected by multiple testing methods,

they may lead to a portfolio with a considerable Sharpe ratio.

There has been a long-standing critique of rational expectation models in macroeconomics and

finance, see Hansen (2007), in which economic agents are not confronted with statistical uncertainty

over structure parameters. In fact, as surveyed by Pastor and Veronesi (2009), learning effect

in financial markets is ubiquitous. Befuddled by parameter uncertainty, rational economic agents

can learn about unknown parameters by updating their beliefs according to Bayes’ rule. In many

existing work, e.g., Collin-Dufresne et al. (2016), learning is slow due to a limited sample size,

hence its effect persists, though in the limit these systems under learning will converge to stationary

rational expectation limits. An exception is Martin and Nagel (2021), in which learning effects

persist because investors face a high-dimensional inference problem. Similarly, arbitrageurs in our

model attempt to make inference on a high-dimensional parameter with a potentially insufficient

sample size. Nonetheless, our setup is substantially different from existing learning framework from

several perspectives. We examine different sequences of DGPs to precisely characterize the finite

sample behavior of arbitrageurs’ trading strategies.3 In most scenarios, our learning system does

2Donoho and Jin (2004) adopt the so-called higher criticism approach, dating back to Tukey (1976), to detect rare
and weak signals in a stylized multiple testing problem.

3Our analysis is related to a large literature in econometrics and statistics that discuss uniform validity of asymptotic
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not converge to a rational expectation limit. Moreover, our analysis does not rely on assumptions

about investors’ preferences or beliefs.

Our paper proceeds as follows. Section 2 develops a statistical limit of arbitrage. Section 3

constructs a feasible trading strategy that achieves the optimal Sharpe ratio. Section 5 analyzes

two alternative trading strategies. Section 6 provides simulation evidence, followed by an empirical

analysis in Section 7. Section ?? concludes. The appendix provides technical details.

2 Statistical Limit of Arbitrage

We start by revisiting the arbitrage pricing framework developed by Ross (1976). This setting is

ideal for explaining the statistical limit of arbitrage because the arbitrage pricing theory is largely

developed based on a reduced-form statistical model for asset returns. While this model is a bit

stylized, it is sufficiently sophisticated to deliver theoretical insight, and is sufficiently relevant to

guide empirical investment decisions.

2.1 A Toy Model

To fix the idea, we consider a toy model in which an N -dimensional vector of returns is pure constant

alpha plus noise, i.e., α + ut, where ui,t ∼ N (0, σ2) for some scalar σ > 0. Suppose arbitrageurs

do not observe the true data generating process and they will make inference on α before building

the optimal portfolio. With a sample size T , their estimated alphas satisfy: α̂ = α + ū, where

ū ∼ N (0, σ2/T ). Suppose further that arbitrageurs know σ, then their optimal portfolio weights

are given by ŵ = σ−2α̂.

Out of sample, this portfolio’s expected return and variance can be written as:

E
(
σ−2 (α+ ū)ᵀ (α+ u)

)
= σ−2αᵀα, Var

(
σ−2 (α+ ū)ᵀ (α+ u)

)
= σ−2(1 + T−1)αᵀα+NT−1,

where u denotes a random variable independent of ū, but share the same distribution as ut. The

resulting squared Sharpe ratio is given by:

S2 =
(σ−2αᵀα)2

σ−2(1 + T−1)αᵀα+NT−1
< σ−2αᵀα := (S?)2, (1)

where the right-hand side is an infeasible squared Sharpe ratio which requires perfect knowledge of

α. The gap between (S?)2 and S2,

(S?)2

S2
− 1 =

1

T
+

N

T (S?)2
.

depending on the magnitude of the last term on the right-hand side, can be considerably large.

approximations, see, e.g., Staiger and Stock (1997), Imbens and Manski (2004), Leeb and Pötscher (2005), Andrews
et al. (2020).
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Now suppose that whenever they find such arbitrage trading dominates its implication cost,

arbitrageurs implement this strategy. In equilibrium, the feasible Sharpe ratio should be equal to

the implementation cost, S2 ≤ C?. We can solve (1) for S? and obtain

(S?)2 ≤ C?

2

{
1 +

1

T
+

√
1 +

1

T
+

4N

C?T

}
.

This inequality suggests that the presence of estimation error widens the bounds within which

the true squared Sharpe ratio can “live” in equilibrium. In addition, even though T is large, the

bounds can be arbitrarily wide, depending on the order of N/T .

This toy model sheds light on when the limit of arbitrage could possibly matter in equilibrium.

Besides, the toy model also has implications on the econometric analysis of factor models. When

APT is tested in the literature, very often the null hypothesis is that all alphas are zero. Such a

null hypothesis is overly restrictive, and more importantly, does not directly translate to violations

of the APT because APT only implies αᵀα <∞.

We follow Shanken (1992)’s suggestion, but instead of using the back of the envelop calculation he

conducted, to build the optimal arbitrage portfolio and evaluate its performance against our priors

to gauge the relevance of APT. Nonetheless, the toy model relies on rather restrictive assumptions

to the extent that we cannot rely on this model for empirical analysis. The next section builds on

the same intuition, but derive methodologies and implications from a general and more realistic

factor model.

2.2 Factor Model Setup

To be more concrete, the factor economy has N assets in the investment universe. The N ×1 vector

of excess returns rt follows a reduced-form linear factor model, for t = 1, 2, . . . , T :

rt = α+ βγ + βvt + ut, (2)

where β is an N ×K matrix of factor exposures (with the first column being a vector of 1s), α is an

N × 1 vector of pricing errors, vt is a K × 1 vector of factor innovations with covariance matrix Σv,

γ is a K × 1 vector of risk premia (and zero beta rate), and ut is a vector of idiosyncratic returns,

independent of vt, with a diagonal covariance matrix Σu.4

Throughout we will consider asymptotic limits as N and T increase while K is fixed. To facil-

itate our asymptotic analysis along the cross-sectional dimension, N , we regard α, β, and Σu as

random variables drawn from some cross-sectional distributions, whereas γ and Σv are regarded as

deterministic parameters, since their dimensions are fixed. We assume that α has mean zero, and

is cross-sectionally independent of β, and that β has full column rank and is pervasive. These as-

4While it is possible to extend our model to the approximate factor setting, allowing for off-diagonal entries in
the covariance matrix Σu will not provide additional insight with respect to the limit of arbitrage we focus on in this
paper.
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sumptions are essential for identification of γ in a model that allows for pricing errors.5 Assumption

A1 in the appendix summarizes these conditions in details.

There are at least three variations of the factor model (2), depending on what econometricians

assume to be observable. The most common setup in academic finance literature imposes that

factors are observable as in e.g., Fama and French (1993).6 The second setting, which has gained

more popularity since its debut in Connor and Korajczyk (1986), assumes that factors are latent.

The third setting, arguably most prevalent among practitioners, is the MSCI Barra model originally

proposed by Rosenberg (1974), where factor exposures are assumed observable. The advantage of the

last model lies in the fact that estimating a large number of (potentially) time-varying stock-level

factor exposures is statistically inefficient and computationally expensive, as opposed to directly

specifying risk exposures as (linear functions of) observable characteristics.7

Our core theoretical results below (e.g., Theorem 1) directly apply to all three cases aforemen-

tioned. In our empirical analysis we will adopt the MSCI Barra framework that is most convenient

for modeling individual stocks. This would also make our analysis highly relevant for practitioners.

2.3 Feasible Near-Arbitrage Opportunities

Building upon the insight of Ross (1976), Huberman (1982) and Ingersoll (1984) established the

concept of near-arbitrage, which can be formalized in a more general setting as below:

Definition 1. A portfolio strategy w at time t is said to generate a near-arbitrage under a sequence

of data-generating processes, such as (2), defined in a filtered probability space (Ω,F , {Ft}t≥0,P), if

it satisfies w ∈ Ft, and along some subsequence m→∞,8 with high probability,

Var(wᵀrt+1|Ft)→ 0, E(wᵀrt+1|Ft) ≥ δ > 0.

Intuitively, no near-arbitrage means there exist no sequence of portfolios that earn positive ex-

pected returns with vanishing risks. Under fairly general assumptions, Ingersoll (1984) established

that a sufficient and necessary condition for the absence of near-arbitrage is that with high proba-

5See, e.g., Assumption I.1 of Giglio and Xiu (2021).
6This is different from saying factor innovations, vt, are observable. The setting of observable factors typically

involves another equation that ft = µ + vt, where µ are the population means of the observed factors ft, which are
not necessarily identical to the factor risk premia, γ.

7Strictly speaking, the MSCI Barra model is cast in a conditional version of (2):

rt = αt−1 + βt−1γt−1 + βt−1vt + ut, (3)

where βt is a vector of observed characteristics and γt−1 is a vector of time-varying risk premia. Analyzing this
conditional model will not yield additional economic insight relative to the unconditional model with respect to the
theoretical limit of arbitrage. This model is overly parametrized that parameters are not identifiable without additional
restrictions. Some examples of parsimonious conditional factor models include Connor et al. (2012), Gagliardini et al.
(2016), and Kelly et al. (2019).

8We adopt the same subsequence definition as that used in Ingersoll (1984). The subsequence typically depends
on the count of investment opportunities, i.e., N , though we do not need make this explicit in this definition. For
simplicity of notation and without ambiguity, we omit the dependence of w on m and t.
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bility, for some constant C > 0,9

S? =

√
αᵀΣ−1u α ≤ C. (4)

The left-hand side is the theoretically optimal Sharpe ratio arbitrageurs can achieve in this

economy without exposure to factor risks. This result suggests that moderate mispricing in the

form of nonzero alphas is permitted in an economy without near-arbitrage opportunities, but there

cannot be too many alphas that are too large, to the extent that S? explodes.

To achieve this optimal Sharpe ratio, arbitrageurs should hold a portfolio with weights given

by w? = Σ−1u α, according to Ingersoll (1984).10 Under the rational expectation assumption, ar-

bitrageurs (agents in this model) know the true (population) parameters: α and Σu. In reality,

however, the true parameters are blind to arbitrageurs as they can only learn them from a finite

sample of data of size T . This learning effect is sometimes harmless since it can be expected that

when the sample size is large enough, the true parameters are (asymptotically) revealed, and hence

the predictions under rational expectation hold approximately. Fundamentally, this phenomenon is

due to the assumption that the learning problem in the limiting experiment becomes simpler as the

sample size increases.

In the current context, the difficulty of the learning problem is also affected by the set of in-

vestment opportunities, N . As N increases, it becomes increasingly difficult for arbitrageurs to

determine which among all assets truly have nonzero alphas for a given sample size, T . If the dif-

ficulty of learning does not diminish as N and T increase, the learning effect will persist, leading

to different limiting implications. It turns out that the rational expectation limit S? is only rele-

vant for rather restrictive scenarios, e.g., T is comparable to N , in which we will show a feasible

strategy exists to achieve S? approximately. In more realistic settings, e.g., N is much larger than

T , the optimal Sharpe ratio arbitrageurs can achieve without factor exposures is far smaller than

S? because of their inability to make error-free inference. Therefore, the condition (4) could be

excessively restrictive in such scenarios.

To illustrate this intuition, we consider a simple and specific example.

Example 1. Suppose the cross-section of alphas is drawn from the following distribution:

αi
i.i.d.∼


µ with prob. ρ/2

−µ with prob. ρ/2

0 with prob. 1− ρ
, 1 ≤ i ≤ N, (5)

where µ ≥ 0 and 0 ≤ ρ ≤ 1, and they potentially vary with N and T . In addition, we also assume

9For a matrix A, we use ‖A‖ and ‖A‖MAX = maxi,j |aij | to denote the operator norm (or L2 norm) and the L∞
norm of A on the vector space. We use C to denote a generic constant that may change from line to line.

10In Ingersoll (1984), α is defined to be the cross-sectional projection of the expected returns onto β in the population
model such that αᵀΣ−1

u β = 0. In this paper, we assume instead that α is random, satisfying E(αᵀβ) = 0, and hence
w? = MβΣ−1

u α.
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Σu = σ2IN , for some σ > 0.

In this example, µ dictates the strength of alphas, ρ describes how rare alphas are, whereas

σ is a nuisance parameter. By modeling parameters µ and ρ as functions of the sample size and

dimensions of the investment set, we can accurately characterize the difficulty of the finite sample

problem arbitrageurs are facing.11 To emphasize the role of signal strength and count, we impose in

this example that all assets share the same alpha distribution and the same idiosyncratic variance.

Now suppose, more specifically, that the magnitude of (µ, ρ) satisfies

µ ∼ T−1/2 and ρ ∼ N−1/2. (6)

This condition (6) implies that the signal strength vanishes as the sample size increases and the

signal count decays as the investment universe expands. That is, only a small portion of assets have

a nonzero yet small alpha. We assume σ is a fixed constant, since in reality idiosyncratic risks never

vanish, whereas alphas can be small driven by competition among arbitrageurs. This model rests

on an uncommon territory in the existing literature of asset pricing: weak and rare alphas. In fact,

the classical no near-arbitrage condition (4) imposes, implicitly, weakness or rareness on alphas;

otherwise, if alphas are strong and dense, αᵀα would explode rather rapidly. Even in the current

setting, in light of the fact that E(αᵀα) = ρµ2N , we still have αᵀα
p−→∞ as long as N1/2/T →∞.

Therefore, a near-arbitrage opportunity arises according to (4).

However, the statistical obstacle prevents arbitrageurs from having this “free lunch.” Under

fairly general assumptions, it is only possible to recover any element of alpha up to some estimation

error of magnitude T−1/2.12 Since the true alpha is of the same order of magnitude as its level of

statistical uncertainty T−1/2, it is impossible for arbitrageurs to determine precisely which assets

among all have nonzero alpha. Indeed, as we will show later, in this model the optimal Sharpe ratio,

denoted by SOPT, among all feasible trading strategies arbitrageurs adopt, vanishes asymptotically

as N,T → ∞, even though the infeasible optimal Sharpe ratio S? → ∞. The gap between SOPT

and S?, as shown by this example, is enormous.

We say a strategy is feasible if it only uses observable data, combined with necessary statistical

inference. We formalize the definition of a feasible portfolio strategy below:

11Adopting a drifting sequence for parameters is a common trick in econometrics to provide more accurate finite
sample approximations. As Bekker (1994) put, “in evaluating the results, it is important to keep in mind that the
parameter sequence is designed to make the asymptotic distribution fit the finite sample distribution better. It is
completely irrelevant whether or not further sampling will lead to samples conforming to this sequence or not.”

12Giglio et al. (2021) develop the asymptotic normality result for alpha estimates via a Fama-MacBeth procedure
in various scenarios, in which factors are (partially) observable or latent whereas β is unknown. The CLTs in these
scenarios share the same form: for any 1 ≤ i ≤ N ,

√
T (α̂i − αi)

d−→ N (0, σ2
i (1 + γᵀ(Σv)−1γ)), (7)

where σ2
i is the ith entry of Σu. In the case that β is observable (but factors are not), we can show that the CLT has

a similar form except that the scalar (1 + γᵀ(Σv)−1γ) disappears.
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Definition 2. A portfolio strategy ŵ is said to be feasible at time t, if it is a deterministic function

of observables from t− T + 1 to t, where T is the sample size.

This Sharpe ratio gap is driven by the fact that the performance of a feasible portfolio depends

on the difficulty of the learning problem. S? is optimal and achievable only when T is comparable

to N , in which case learning is not too difficult for arbitrageurs, to the extent that the learning

effect diminishes in the limit and the rational expectation limit becomes relevant. In practice, T is

typically far smaller than N , the optimal arbitrage Sharpe ratio achievable is thus much smaller,

compared to S?.

2.4 Upper Bound on Feasible Sharpe Ratios

We now demonstrate the impact of the feasibility constraint on the optimal arbitrage portfolio. For

any feasible strategy ŵ, its (conditional) Sharpe ratio can be written as:

S(ŵ) := E(ŵᵀrt+1|Ft)/Var(ŵᵀrt+1|Ft)1/2.

The next theorem provides an upper bound on S(ŵ):

Theorem 1. Suppose that rt follows (2) and Assumption A1 in the appendix holds. For any feasible

portfolio weight ŵ, its Sharpe ratio, S(ŵ), satisfies:

S(ŵ) ≤
(
S(G)2 + γᵀΣ−1v γ

)1/2
+ oP(1), with S(G)2 := E(α|G)ᵀΣ−1u E(α|G), (8)

where G is the information set (i.e., σ-algebra) generated by {(rs, β, vs,Σu) : t− T + 1 ≤ s ≤ t}.

Intuitively, S(G)2 and γᵀΣ−1v γ are squared Sharpe ratios originated from trading arbitrage port-

folios and factor portfolios, respectively. Furthermore, S(G) is an upper bound for Sharpe ratios of

all feasible portfolio strategies that have no factor exposures.

Theorem 1 shows that it is E(α|G), the posterior estimate of the pricing errors, α, that dictates

the optimal feasible Sharpe ratio for arbitrageurs, rather than α themselves. In fact, it holds by the

definition of S(G) that

E
(
S(G)2

)
≤ E

(
αᵀΣ−1u α

)
,

with the equality holds only when E(α|G) = α almost surely, where the right-hand side corresponds

to the infeasible scenario in which arbitrageurs can learn α perfectly using their information set,

which echoes (4), the result given by Huberman (1982).13 In light of Definitions 1 and 2, we

immediately obtain a sufficient condition of the absence of near-arbitrage with feasible strategies:

13For ease of discussion, we assume alpha is random. This difference with Huberman (1982) by itself does not affect
any economic or statistical conclusions we draw in this paper.
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Corollary 1. Suppose the same assumptions as in Theorem 1 hold. For any given return-generating

process satisfying (2), there exists no feasible strategy ŵ that leads to a near-arbitrage, if

P
(
S(G) ≤ C

)
→ 1, as N,T →∞, (9)

for some constant C.

The form of S(G) in Theorem 1 appears to suggest that arbitrageurs rely on the information set

G that embodies knowledge of factors, vt, and their exposures, β, in addition to past asset returns,

rt. Moreover, arbitrageurs appear to have perfect knowledge of the (diagonal) covariance matrix

of idiosyncratic errors, Σu. In fact, this upper bound still holds if arbitrageurs are endowed with

less information, because for any information sets G′ and G such that G′ ⊆ G, we have E(S(G′)2) ≤
E(S(G)2). Furthermore, we will show in Section 3 that S(G) is in fact achievable by a feasible strategy

we construct, which only assumes knowledge of β and rt – the setting in which factor exposures are

observable. This implies that the no near-arbitrage bound in (9) is sufficient and necessary. The

reason that Σu plays no significant role is that in our model idiosyncratic variances do not vanish as

N and T increase, unlike alphas. This assumption makes sense empirically, because alphas are small

and (potentially) rare, driven by competition among arbitrageurs, whereas idiosyncratic risks never

diminish. Consequently, detecting alphas is more challenging as opposed to estimating idiosyncratic

variances, and hence the latter plays a secondary (and negligible) role as opposed to the former in

the limit of arbitrage.

We end the current discussion with a more explicit expression for S(G):

Proposition 1. Suppose that rt follows (2) and Assumptions A1 and A2 hold. Then it holds that

S(G) = SOPT + oP(1), with SOPT =

(
NE

(
σ−2i

∫
ψ(a, σi, T )2p(a, σi, T )da

))1/2

,

where

ψ(a, σi, T ) =
E
(
αiφ(a− T 1/2αi/σi)

∣∣σi)
E
(
φ(a− T 1/2αi/σi)

∣∣σi) , p(a, σi, T ) = E
(
φ(a− T 1/2αi/σi)

∣∣σi) ,
φ(·) is the normal pdf function, E(·) is the expectation taken with respect to the cross-sectional

distributions of α and σ, and σ2i is the ith entry of Σu.

To shed more light on this result, we compare this optimal Sharpe ratio SOPT with S? of

Huberman (1982) using Example 1.

Corollary 2. Suppose that rt follows (2) and Assumption A1 holds. In addition, we assume alpha

follows (5) as in Example 1. Then we have S? = E(S?) + oP(1). Further, assuming that E(S?) does

not vanish, then it holds that SOPT ≤ (1− ε)E(S?) for some ε > 0, if and only if

T 1/2µ/σ −
√
−2 log ρ ≤ C, (10)
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for some constant C.

Corollary 2 suggests that when T 1/2µ/σ is large, the constraint (10) is more likely violated, in

which case SOPT ≈ E(S?), that is, in the limit, the learning effect does not play any role, so that

our arbitrageurs achieve the same optimal Sharpe ratio as in Huberman (1982). Furthermore, the

rareness parameter ρ does not make much difference if T 1/2µ/σ gets sufficiently large. That said, if

ρ approaches to zero so fast to the extent that
√−2 log ρ dominates T 1/2µ/σ, that is, alpha is rare

and in the mean time not sufficiently strong, the learning problem becomes rather challenging and

hence SOPT would be dominated by E(S?) in the limit, resulting in a distinct optimal Sharpe ratio

as opposed to the classical case.

3 Constructing the Optimal Arbitrage Portfolio

In our previous discussion, we have shown in Theorem 1 that the optimal Sharpe ratio for any

feasible strategy is bounded by S(G). In Proposition 1, we have shown that S(G) ≈ SOPT under

additional assumptions. Corollary 2 further demonstrates that the optimal Sharpe ratio can vary

with sequences of DGPs. In light of this, we expect that the optimal strategy depends on the

unobserved DGP as well, creating a challenge for arbitrageurs who cannot observe the true DGP.

It turns out that arbitrageurs can construct a uniformly valid estimator of the optimal portfolio

weights, which achieves SOPT over a large class of return generating precesses. We demonstrate this

in the setting where factors are latent but factor exposures are observable, since this is the case we

analyze empirically. Moreover, we do not assume any knowledge of unknown variables, such as Σu.

Instead we estimate them when necessary.

Algorithm 1 (Constructing the Optimal Arbitrage Portfolio).

S1. We split the observed sample T = {t− T + 1, . . . , t} into:

S′ = {t− bT 1/2c+ 1, . . . , t} and S = T − S′,

and we construct cross-sectional regression estimates of alpha ᾰ and ᾰ′, volatility estimates σ̆,

and the t-statistics z̆i = |S|1/2ᾰi/σ̆i for each i = 1, 2, . . . , N , using subsamples S and S′:14

ᾰ = |S|−1
∑
s∈S

Mβrs, ᾰ′ = |S′|−1
∑
s∈S′

Mβrs, and σ̆2i = |S|−1
∑
s∈S

(
(Mβrs)i − ᾰi

)2
,

where Mβ = IN − β(βᵀβ)−1βᵀ and IN denotes the N ×N identity matrix.

S2. We choose the arbitrage portfolio weights as

ŵOPT = Mβw̆, with w̆i =

{
f̂(bz̆i/kNc, bσ̆i/k3/2N c), |z̆i| ≤ k

−2/3
N ,

(σ̆i)
−2ᾰi, |z̆i| > k

−2/3
N .

14For any set S, we use |S| to denote the number of elements in S.
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For any set of integers (l,m), we choose kN ∼ (logN)−1 and define

f̂(l,m) =
1

m2k3N

1

|B(l,m)|
∑

i∈B(l,m)

α̂′i,

where

B(l,m) =
{
i ≤ N : l ≤ ẑi/kN < l + 1;m− 1 ≤ σ̂i/k3/2N < m+ 2

}
.

As we have discussed in footnote 10, the optimal strategy in the case that arbitrageurs know the

true DGP is given by

w? = MβΣ−1u α. (11)

Part of the above construction, Σ−1u α, is the optimal allocation to the ex-factor returns, α + ut =

rt − β(γ + vt), in the conventional setting. Multiplying by Mβ in (13) simply eliminates factor

exposures in rt. Effectively, Step S1 of Algorithm 1 provides estimates of ᾰi and σ̆2i . Step S2 first

constructs a nonparametric estimate of the function f(α, σ2) = E(α/σ2|{rs, β}s∈T ), with which

the optimal weights on de-factor returns are estimated by w̆. This, in turn, leads to the optimal

weight estimates, ŵOPT, on original asset returns. An essential step towards uniform inference is

the construction of w̆, in which we deal with strong and weak signals separately. The strong signals

(those with t-statistics greater than k
−2/3
N ) are singled out, for which we can obtain relatively precise

estimates of their optimal weights. For weaker signals, we consolidate information therein to obtain

an estimate of the conditional expectation of their alphas, using which we obtain their optimal

portfolio weights. This strategy outperforms the alternatives that directly use estimated alphas as

if these estimates are not susceptible to errors, or simply ignore the contribution from the weaker

signals.

The following theorem demonstrates the optimality of ŵOPT:

Theorem 2. Let P denote the collection of all data-generating processes under which rt follows

(2), and Assumptions A1 and A3 hold. We denote the Sharpe ratio generated by the portfolio

strategy ŵOPT as ŜOPT := E(rᵀt+1ŵ
OPT|Ft)/Var(rᵀt+1ŵ

OPT|Ft)1/2. Then it holds that ŵOPT achieves,

asymptotically, the upper bound SOPT uniformly over all sequences of data-generating processes

P ∈ P. That is, for any ε > 0,

lim
N,T→∞

sup
P∈P

P
(∣∣ŜOPT − SOPT

∣∣ ≥ εSOPT + ε
)

= 0.

Theorem 2 concludes that in the context of a linear factor model, arbitrageurs can construct

this strategy, without any knowledge besides past returns and risk exposures (beta), to achieve the

optimal Sharpe ratio of any feasible trading strategies that have zero exposure to factor risks. This

Sharpe ratio precisely characterizes the limit of feasible arbitrages in economic terms. Its gap to

E(S?), the Sharpe ratio under rational expectation, is determined by the difficulty of the learning

problem.
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With Theorem 2, we can establish the necessity for the no near-arbitrage condition given by (9).

Corollary 3. Suppose the assumptions in Theorem 2 hold. The portfolio weights by ŵOPT yields

a near-arbitrage strategy under any sequences of data-generating processes for which condition (9)

does not hold.

We have shown that arbitrageurs can construct an optimal strategy that realizes SOPT. Now

suppose that the equilibrium “cost” of implementing an arbitrage is C? in an economy with statistical

limit of arbitrage. In equilibrium, SOPT = C?, otherwise arbitrageurs can trade until it is no longer

profitable to do so. We can thereby interpret ŜOPT as an empirical estimate of the arbitrage cost

C?.

4 Estimating Optimal Infeasible Sharpe Ratio

We are also interested in estimating the maximal investment opportunities in the data generating

process, as measured by S?. Existing literature on testing APT often construct a test statistics

in the spirit of Gibbons et al. (1989), based on the infeasible optimal Sharpe ratio of arbitrage

portfolios, S?, see, e.g., Pesaran and Yamagata (2017) and Fan et al. (2015).

While such tests are powerful, they do not account for the statistical limit facing arbitrageurs,

who are incapable of constructing a feasible portfolio to realize this Sharpe ratio.

To illustrate the gap between S? and SOPT, we now construct an estimator for (S?)2.

(Ŝ?)2 =
∑
i≤N

σ̂−2i T−2
T∑
t=1

∑
1≤t′≤T :t′ 6=t

ri,tMβri,t′ . (12)

The estimator takes the form of the sum over individual squared Sharpe ratios, but it is adjusted

to remove squared returns, which would bias the estimates for certain data generating processes.

The next proposition establishes its validity.

Proposition 2. Suppose rt follows (2), and Assumptions A1 and A3 hold. Then we have

∣∣Ŝ? − S?∣∣/(1 + S?
)

= oP
(
T−1/4

)
.

As shown by this proposition, the estimation error is relative when S? is large and dominates 1

asymptotically, and absolute if S? is small and dominated by 1. This is necessary as we simulta-

neously consider a large class of DGPs, some of which have an exploding or a shrinking S?, which

also plays a role in the convergence rate.

5 Alternative Strategies for Arbitrage Portfolios

Algorithm 1 suggests a relatively complicated procedure that distinguishes weaker and strong sig-

nals using t-statistics before consolidating information about weaker signals to build the optimal
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portfolio. In this section, we study several alternative methods, neither of which can achieve opti-

mality uniformly across all DGPs we consider, but they are simpler and prevalent in practice. The

contrast among these strategies helps illustrate the necessity of consolidating information about

weaker signals altogether in an optimal portfolio strategy.

5.1 Cross-Sectional Regression

The conventional approach to estimating alphas is through the cross-sectional regression:

α̂ =
(
β̂
ᵀ
β̂
)−1

β̂
ᵀ
r̄, r̄ =

1

T

T∑
t=1

rt.

with which the arbitrage portfolio weights can be constructed directly as:

ŵCSR = MβΣ̂−1u α̂. (13)

This choice of portfolio weight is the sample analog of the optimal weight given by (11). Proposition

3 describes the asymptotic behavior of the expected Sharpe ratio of this arbitrage portfolio in the

setting of Example 1. To enhance its finite sample performance and simplifies the proof, we assume

that Σ̂u = σ̂2IN , since in this example, all assets share the same volatility, which can be estimated

altogether. This further simplifies the analysis because a scaling factor does not play any role in the

optimal Sharpe ratio.

Proposition 3. Suppose that rt follows (2) and Assumption A1 holds. In addition, we assume

alpha follows (5) as in Example 1. The Sharpe ratio of the arbitrage portfolio, whose weights are

given by ŵCSR = σ̂−2Mβα̂, satisfies ŜCSR − SCSR = oP(1), where

ŜCSR = E(rᵀt+1ŵ
CSR|Ft)/Var(rᵀt+1ŵ

CSR|Ft)1/2, SCSR =
N1/2ρµ2σ−2

(T−1 + ρµ2σ−2)1/2
.

Further, assuming SOPT does not vanish, then as N,T →∞, we have SCSR ≤ (1−ε)SOPT for some

fixed ε > 0, if and only if

C ≤ Tµ2σ−2 ≤ C ′ρ−1. (14)

for some constants C and C ′.

Proposition 3 suggests that arbitrageurs using this cross-sectional regression strategy cannot

always achieve the optimal feasible Sharpe ratio. In fact, this strategy is dominated by the optimal

strategy when signals are very strong (C ≤ Tµ2σ−2) and in the mean time there are not too many

strong signals (Tµ2σ−2 ≤ C ′ρ−1). Intuitively, the CSR approach treats all signals equally, without

distinguishing fake signals (zero alphas) from the true ones. This strategy works well when the

strong signals are abundant (i.e., ρ is relatively large) or when all signals are weak (so that they
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do not differ too much from fake ones). The latter case is more interesting, as it also suggests that

simply ignoring weaker signals is not optimal.

The CSR approach is a simple benchmark as it does not rely on any advanced statistical tech-

niques to detect signals or distinguish their strength. The strategy we discuss next controls false

discoveries among selected strong signals using the B-H procedure.

5.2 False Discovery Rate Control

From the statistical point of view, we can formalize the search for alpha as a multiple testing problem.

Say, there are N assets potentially with nonzero α, and for each i, we can define a null hypothesis:

Hi
0 : αi = 0, hence detecting for alpha becomes a multiple testing problem. With multiple testing

comes the concern of data snooping, meaning that a large fraction of tests that appear positive are

in fact due to chance. One sensible approach is to control the false discovery rate (FDR), instead

of the size of individual tests, a proposal advocated by Barras et al. (2010), Bajgrowicz and Scaillet

(2012), and Harvey et al. (2016) in different asset pricing contexts.

The B-H procedure proposed by Benjamini and Hochberg (1995) is often adopted to control

FDR in multiple testing problems. Giglio et al. (2021) have proved its validity in a general factor

model setting. Below we describe the algorithm for constructing alpha estimates, which will be used

as inputs to the construction of an arbitrage portfolio.

Algorithm 2 (The B-H based Alpha Selection). Let α̂ be the estimator of α via the cross-sectional

regression, and {pi : i = 1, . . . , N} be the p-values of the corresponding t-test statistics.

S1. Sort in ascending order the collection of p-values, with the sorted p-values given by p(1) ≤
. . . ≤ p(N).

S2. For i = 1, . . . , N , reject Hi
0 : αi = 0, if pi ≤ p

(k̂)
, where k̂ = max{i ≤ N : p(i) ≤ τi/N}, for

any pre-determined level τ , say, 5%.

We can then adjust our alpha estimates using

α̂BH
i (τ) = α̂i1{pi≤p(k̂)}. (15)

The B-H procedure guarantees (in expectation) the selection of a group of assets among which

at least a fraction of (1 − τ) have nonzero alphas, regardless of the actual percentage of alphas

in the data generating process. Effectively, it imposes a hard-thresholding procedure on the alpha

estimates, replacing less significant alphas by zero. Similar to (13), the optimal portfolio weights

are thus given by:

ŵBH = MβΣ̂−1u α̂BH(τ). (16)

Our focus is on optimal portfolio construction instead of false discovery control. The next proposition

shows that in the context of Example 1, arbitrageurs who adopt the B-H based alpha estimator
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cannot achieve optimal portfolio for a large class of DGP sequences. In fact, we can prove a richer

result. Even if arbitrageurs knew that all assets with non-zero alphas have an equally strong alpha

(which is true in this example) with the same idiosyncratic volatility, so that they adopted the

following estimates for alpha instead of (15):

αBH
i (τ) = sgn(α̂i)α1{pi≤p(k̂)}, α =

∑
i

|α̂i|1{pi≤p(k̂)}/
∑
i

1{pi≤p(k̂)}, (17)

still they would not be able to achieve the optimal performance.

Proposition 4. Suppose that rt follows (2) and Assumption A1 holds. In addition, we assume

alpha follows (5) as in Example 1. The Sharpe ratio of the arbitrage portfolio with weights given by

ŵBH = σ̂−2Mβα̂
BH
i (τ) and wBH = σ̂−2Mβα

BH
i (τ) satisfies S

BH −
√

1− τSBH = oP(1) and ŜBH ≤
SBH + oP(1), where15

SBH = µσ−1
√
ρNΦ(T 1/2µ/σ − z∗),

and

ŜBH = E(rᵀt+1ŵ
BH|Ft)/Var(rᵀt+1ŵ

BH|Ft)1/2, S
BH

= E(rᵀt+1w
BH|Ft)/Var(rᵀt+1w

BH|Ft)1/2.

Here Φ(·) is the normal cdf, and z∗ is the positive solution of the equation

2(1− τ(1− ρ))Φ(−z) = τρΦ(T 1/2µ/σ − z). (18)

Suppose further that SOPT does not vanish, and that CN−1+λ ≤ ρ ≤ CN−λ for some fixed λ > 0.

Then it follows that, as N,T → ∞, SBH ≤ (1 − ε)SOPT for some fixed ε > 0, if and only if, for

some fixed ε′ > 0,

T 1/2µ/σ ≤ (1− ε′)
√
−λτ log ρ, (19)

where λτ ∈ (2/3, 2) only depends on τ and λτ → 2 as τ → 0.

As Proposition 4 shows, (19) indicates that if the signal-to-noise ratio is not sufficiently strong,

the B-H procedure is unlikely to reach SOPT. This is because it ignores many individually impotent

signals, which would hurt the portfolio performance, even though B-H remains a preferable approach

to selecting truly significant alphas while controlling false discoveries. In contrast, the optimal

arbitrage portfolio exploits information embedded in all alpha estimates, including false positives,

beyond the set of significant ones selected via B-H procedure. This result also demonstrates a clear

distinction between two objectives: alpha testing and portfolio construction, the objectives of which

do not always align.

The CSR and the B-H approaches represent two typical strategies in practice. The former treats

all signals identically without distinguishing their strength, whereas the latter only focuses on the

stronger signals. Neither of the two always achieves optimality.

15If ŵBH = 0, i.e., no asset is selected, we set ŜBH = 0 by convention.
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5.3 Shrinkage Approaches

The analysis above suggests that we can construct the optimal portfolio out of the de-factored returns

directly, while imposing priors to regularize the portfolio weights. This amounts to imposing such

priors on the alpha estimates. To see this, suppose we adopt a shrinkage approach:

arg max
w
{wᵀα̂− 1

2
wᵀΣ̂uw − pλ(w)},

where pλ(w) = λ ‖w‖1 or λ ‖w‖22, for some λ > 0. Since Σ̂u is diagonal, the closed-form optimal

portfolio weight is thereby given by

ŵq = Mβψq(α̂, Σ̂u, λ), q = 1, 2,

where q = 1 corresponds to the Lasso penalty and q = 2 the ridge, and for i = 1, 2, . . . , N ,(
ψ1(α̂, Σ̂u, λ)

)
i

= (σ̂i)
−2sgn(α̂i)(|α̂i| − λ)+,

(
ψ2(α̂, Σ̂u, λ)

)
i

=
(
(σ̂i)

2 + λ
)−1

α̂i.

Depending on the magnitude of λ, the Lasso approach replaces all smaller signals by zero and shrinks

the larger signals by λ in absolute terms. In other words, the lasso approach is the soft-thresholding

alternative to the B-H method. In contrast, the ridge penalty shrinks all signals proportionally with

a shrinkage factor depending on σ̂2i . Like the above analysis, when specialized to example (1), we

can adopt Σ̂u = σ̂2IN , in which case ridge becomes equivalent to CSR. The “embedded” shrinkage

effect of CSR explains why it performs well in the case of small signals. Proposition 5, along with

Proposition 3, demonstrate that neither Lasso nor ridge can achieve optimal Sharpe ratio in all

DGPs even with the optimal tuning parameter λ.

Proposition 5. Suppose that rt follows (2) and Assumption A1 holds. In addition, we assume

alpha follows (5) as in Example 1. The Sharpe ratio of the arbitrage portfolio with weights given by

ŵq satisfies Ŝ1 − SLASSO = oP(1) and Ŝ2 − SCSR = oP(1), where

SLASSO = ρµσ−1N1/2

∫∞
−∞ sgn(x)(T−1/2σ|x| − λ)+φ(T 1/2σ−1µ− x)dx√∫∞

−∞
(
(T−1/2σ|x| − λ)+

)2(
(1− ρ)φ(x) + ρφ(T 1/2σ−1µ− x))

)
dx
,

and SCSR is defined in Proposition 3.

Suppose further that SOPT does not vanish, and that CN−1+λ ≤ ρ ≤ CN−λ for some fixed

λ > 0. Then it follows that, as N,T → ∞, SLASSO ≥ (1 − ε)SOPT for some fixed ε > 0 under all

sequences of λ, if and only if

T 1/2µ/σ ≥ C, and
Tµ2/σ2 + 2 log ρ√− log ρ

≤ C.
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6 Simulation Evidence

This section demonstrates the empirical relevance of our theory via simulations and examines the

finite sample performance of the proposed portfolio strategies.

6.1 Numerical Illustration of Theoretical Predictions

We start by examining theoretical predictions. For simplicity and clarity, we simulate a one-factor

(CAPM) model of returns given by (2). We choose the factor risk premiua as 5% per year and set

the annualized volatility at 25%. We model the cross-section of betas using a normal distribution

with mean 1 and variance 1. Since we focus on the arbitrage portfolio, the parameters about the

factor component (including the number of factors) are inconsequential, because factors, if any,

are eliminated by Mβ in the first step when constructing these trading strategies. In addition, we

adopt model (5) in Example 1 for the cross-sectional distribution of alpha, and fix the idiosyncratic

volatilities of all assets at σ, since it is α/σ that determines the signal strength and that there is no

need of varying both α and σ in the cross section.

Figure 1 reports the Sharpe ratio, SOPT, of optimal feasible arbitrage portfolios for a range of

µ/σ and ρ values in the case of N = 1, 000 and T = 20 years. Recall that according to model (5), a

ρ percentage of assets have alphas with a Sharpe ratio µ/σ. That is, ρ characterizes the rareness of

the alpha signal, whereas µ/σ captures its strength. We intentionally choose a wide range of µ/σ

(with annualized Sharpe ratios from 0.11 to 10.95) and ρ (from 0.12% to 50%) to shed light on the

dependence landscape of Sharpe ratios on signal weakness and rareness, despite that some of the

resulting portfolio Sharpe ratios (the top left conner of Figure 1) are unrealistically high. Note that

when µ/σ×
√

12 hits 0.44, its corresponding t-statistic based on a 20-year sample exceeds 1.96, the

typical t-hurdle for a standard student-t test.

The pattern of Sharpe ratios agrees with our intuition and theoretical predictions. For any fixed

ρ, as the alpha signal weakens (i.e., µ/σ decreases), the optimal Sharpe ratio drops. The same is

true if we decrease the signal count (i.e., ρ vanishes), for any fixed value of µ/σ. The arbitrageur’s

learning problem is the easiest when signal is strong and count is large (top left conner), and the

most challenging towards the right bottom conner, where the optimal Sharpe ratios drop to near 0.

The reported Sharpe ratios on Figure 1 are only a fraction of the corresponding (infeasible)

Sharpe ratios, S? =
√
αᵀ(Σu)−1α = µ/σ

√
ρN , as shown by Figure 2. The pattern we see from

Figure 2 agrees with theoretical predictions of Corollary 2. When the annualized Sharpe ratio

µ/σ ×
√

12 is larger than 2.74, regardless of the values of ρ, the signal-to-noise ratio of the learning

problem is sufficiently strong that the statistical limit to arbitrage does not matter much, and

hence SOPT/S? is close to 1. Nonetheless, this regime is irrelevant in practice, since it is mostly

associated with unrealistically high Sharpe ratios (see Figure 1). In contrast, as µ/σ diminishes,

the gap between S? and SOPT widens. In almost all empirically relevant scenarios, S? is largely

exaggerated.

We now turn to the comparison of Sharpe ratios of optimal feasible arbitrage portfolios with those
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Figure 1: Optimal Sharpe Ratios (SOPT) of Feasible Arbitrage Portfolios

Note: The figure reports optimal Sharpe ratios of feasible arbitrage portfolios in model (5), in which a 100 × ρ%

of assets have alphas that correspond to an annualized Sharpe ratio µ/σ ×
√

12.
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Figure 2: Ratios between SOPT and S?

Note: The figure reports the ratios of optimal Sharpe ratios between feasible and infeasible arbitrage portfolios.

The simulation setting is based on model (5), in which a 100 × ρ% of assets have alphas that correspond to an

annualized Sharpe ratio µ/σ ×
√

12.

achieved by alternative strategies. Figure 3 compares with the cross-section regression approach in

Section 5.1, Figure 4 with the B-H based procedure given by Section 5.2, and Figure 5 with LASSO

21



given by Section 5.3, respectively.

According to Proposition 3, the optimal portfolio dominates the cross-sectional regression based

portfolio if (14) holds. This dominance regime is bounded by a vertical line (as implied by the

first inequality) and a cubic curve (as implied by the second inequality), which is visible from

Figure 3 (black numbers on the heatmap). As µ/σ ×
√

12 approaches 1.0 (a vertical line) from the

right or the upper left corner, the gap between the two Sharpe ratios shrinks. Intuitively, when a

large number of signals are clearly separable from the null (top left corner), the statistical inference

becomes simpler so that the cross-sectional regression estimator of α is sufficient for building optimal

portfolios. On the other hand, as the signal strength vanishes (the right vertical boundary), the

relative performance of the regression approach improves because it is equivalent to a ridge penalized

regression that works well when all signals are weak and almost indistinguishable from noise. Figure

1 shows that the DGPs with respect to parameters for which the cross-sectional regression approach

is strongly dominated by our optimal strategy are associated with realistic Sharpe ratios.
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Figure 3: Ratios between SCSR and SOPT

Note: The figure reports the ratios between the Sharpe ratios of the OLS based portfolio and the feasible optimal

arbitrage portfolio. The simulation setting is based on model (5), in which a 100 × ρ% of assets have alphas that

correspond to an annualized Sharpe ratio µ/σ ×
√

12.

Similarly, the B-H procedure cannot achieve the optimal Sharpe ratio, as shown by Figure 4.

According to Proposition 4, the gap between the optimal Sharpe ratio and the B-H approach largely

depends on the signal strength. As long as Tµ2σ−2 → 0, the inequality (19) holds (since ρ < 1), the

B-H procedure achieves the optimality. These scenarios correspond to the white values on Figure

4, where the border of the dominant region is located near the vertical line at µ/σ
√

12 = 2.19.

Intuitively, the B-H is effective in singling out strong signals, so it leads to almost optimal portfolios

as long as all signals are strong. However, when signals are weak, the B-H procedure, which
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amounts to hard-thresholding, performs worse than the cross-sectional regression, since in this case

the embedded ridge regularization in the latter is more appropriate than hard-thresholding. As

shown by Figure 1, even if alphas are individually weak, their empirical relevance should not be

ignored because their collective contribution to the portfolio’s Sharpe ratio can be highly non-trivial.

The B-H approach is overly conservative compared to alternatives in this parameter regime.
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Figure 4: Ratios between SBH and SOPT

Note: The figure reports the ratios between the Sharpe ratios of the multiple testing based portfolio (via B-H

procedure) and the feasible optimal arbitrage portfolio. The simulation setting is based on model (5), in which a

100× ρ% of assets have alphas that correspond to an annualized Sharpe ratio µ/σ ×
√

12.

Last but not least, Figure 5 presents the result for LASSO. This approach involves a tuning

parameter, which calls for a cross-validation procedure. We adopt an infeasible and theoretically

optimal tuning parameter, λ, which maximizes SLASSO, making this approach a stronger competitor.

Even though Proposition 5 suggests that LASSO is not uniformly optimal, it performs quite well,

achieving the optimal Sharpe ratio in almost all regimes. Intuitively, when signals are very strong,

LASSO behaves like a hard-thresholding selector, as shrinkage does not play too much a role. When

signals are rather weak, LASSO behaves like a ridge, because shrinking these signals does not change

the fact that they are almost indistinguishable from noise.

6.2 Comparison of Portfolio Strategies in Finite Sample

We now compare the finite sample performance of our portfolio estimators over different DGPs. For

any given parameter value (µ/σ, ρ) in a DGP, we estimate the portfolio weights, ŵOPT, using our

Algorithm 1, and calculate the resulting (theoretical) Sharpe ratio: ŵOPTᵀ
µ/
√
ŵOPTᵀ

Σ−1u ŵOPT.

We then calculate the average Sharpe ratio over all Monte Carlo repetitions. Our approach re-
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Figure 5: Ratios between SLASSO and SOPT

Note: The figure reports the ratios between the Sharpe ratios of the LASSO based portfolio and the feasible optimal

arbitrage portfolio. The simulation setting is based on model (5), in which a 100 × ρ% of assets have alphas that

correspond to an annualized Sharpe ratio µ/σ ×
√

12. The tuning parameter λ is selected to maximize SLASSO.

quires a tuning parameter kn. For robustness, we report results based on three parameter values

(0.5kn, kn, 2kn) with kn = 0.25. We repeat this exercise for the CSR, B-H, and LASSO methods for

comparison.

In light of Theorem 2, a sensible choice of the estimation error can be written as:

ErrA(µ/σ, ρ) = |ŜA − SOPT|/(1 + SOPT),

where A denotes OPT, CSR, BH, or LASSO, and the dependence of ŜA and SOPT on µ/σ and ρ

is omitted. When SOPT is large (i.e., >> 1), this error is in percentages relative to SOPT; when

SOPT is small (i.e., oP(1)), the error is measured in terms of the absolute difference. The error is

defined this way because SOPT itself can diverge or diminish depending on different parameters in

the simulated DGPs.

Table 1 reports the maximal error over all values of µ/σ and ρ given in Section 6.1. The results

show that OPT has a smaller error in almost all cases for all tuning parameters than CSR, BH, or

LASSO. As T increases from 10 years to 40 years, the maximum error drops from 0.377 to 0.263 in

the case of N = 1, 000 for kn = 0.25, whereas CSR, BH and LASSO stay above 0.44. The maximal

error for CSR is achieved at the lower left conner of Figure 1, where signals are strong but rare; for

BH, the worst performance occurs around the upper right corner, where many weak signals exist;

for LASSO, the worse is near the bottom but in the middle, where signals are neither too strong

nor too weak.
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N = 1, 000, Monthly N = 3, 000, Monthly N = 1, 000, Daily
T = 10 T = 20 T = 40 T = 10 T = 20 T = 40 T = 10 T = 20 T = 40

0.385 0.332 0.289 0.442 0.367 0.320 0.449 0.440 0.408
OPT 0.377 0.309 0.263 0.437 0.333 0.282 0.411 0.382 0.356

0.381 0.282 0.233 0.446 0.318 0.247 0.370 0.334 0.303
CSR 0.540 0.489 0.441 0.618 0.570 0.515 0.537 0.485 0.427
BH 0.742 0.703 0.651 0.814 0.789 0.748 0.760 0.715 0.657
LASSO 0.537 0.488 0.440 0.615 0.568 0.512 0.536 0.483 0.426

Table 1: Sharpe Ratio Comparison in Simulations

Note: This table reports the maximum error, defined by supµ/σ,ρ ErrA(µ/σ, ρ), where A denotes either OPT, or CSR,
or BH, over all values of µ/σ and ρ in Figure 1, for several choices of N , T (in years), and data frequencies. The
first three rows correspond to the OPT approach with three different values of tuning parameters, 0.5kn, kn, and 2kn,
respectively, where kn = 0.25. The BH approach controls false discovery rate at a level 5%. The LASSO approach
uses the optimal (infeasible) tuning parameter that optimizes SLASSO.
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Figure 6: Ratios between (Ŝ?)2 and SOPT

Note: The figure reports the ratios between the Sharpe ratios of the multiple testing based portfolio (via B-H

procedure) and the feasible optimal arbitrage portfolio. The simulation setting is based on model (5), in which a

100× ρ% of assets have αs that correspond to an annualized Sharpe ratio µ/σ ×
√

12.

7 Empirical Analysis of US Equities

To demonstrate the empirical relevance of the statistical limit of arbitrage, we study US monthly

equity returns from January 1965 to December 2020. We apply the usual filters (share codes 10

and 11 and exchange cod 1, 2, and 3) to the universe of stock returns downloaded from CRSP. The

average number of stocks per month is 4,720.

We adopt a multi-factor model with 16 characteristics and 11 GICS sectors, which are selected

to incorporate empirical insight from existing asset pricing literature and industry practice. The
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selected characteristics include market beta, size, operating profits/book equity, book equity/market

equity, asset growth, momentum, short-term reversal, industry momentum, illiquidity, leverage,

return seasonality, sales growth, accruals, dividend yield, tangibility, and idiosyncratic risk, which

are downloaded directly from the website openassetpricing.com, see Chen and Zimmermann (2020)

for construction details.

We only consider stock-month pairs without missing industry sectors. The average number of

stocks per month that meet this criterion is reduced to 4,073. The missing of sector information

mainly occurs prior to 1990. With information on industry sectors, we adopt a two-step procedure

to fill in missing characteristics. For any missing value in a stock’s characteristic, we fill it with

the sector-wise median of this characteristic each month. If there are no characteristic data for the

entire sector in certain month, we fill them with this characteristic’s cross-sectional median in this

month.

The resulting panel is not balanced, because we do not fill in missing data before a stock’s IPO

or after its delisting. Our approach to filling missing data thereby avoids forward-looking bias.

7.1 Model Performance

At the end of each month, we run cross-sectional regressions of next month returns onto the 27

cross-sectional predictors (including the intercept). We do so only for common stocks in these

two cross-sections. Following Gu et al. (2020), the 16 characteristics are rank-normalized within

each cross-section, which eliminate outliers in characteristics. The cross-section of returns are also

winsorized at 99.5% and 0.5% quantiles, but only in cross-sectional regressions for the reason of

robustness. The regression residuals for these winsorized returns are re-calculated using unwinsorized

returns and regression coefficients.

Figure 7 plots the time series of the cross-sectional regression R2s over time. The R2 has been

on the decline since the beginning of the sample till 1990s. This coincides with the period when the

number of stocks in the US equity markets increases. The R2s are moderately low, with an average

of 9.03%. The low R2s suggest that a substantial portion of cross-sectional variation of individual

equity returns is idiosyncratic noise. Therefore, learning alphas from residuals of the factor model

is an incredibly difficult statistical task.

7.2 Rare and Weak Alphas

We now study the statistical properties of alphas using the full sample data. For each stock, we

collect its regression residuals and take their average as an estimate for its alpha. We impose that

all residuals to have at least 60 observations. This ensures enough sample size for inference on

alpha, although our results are not sensitive to this choice. Figure 8 provides histograms of the

t-statistics and Sharpe ratios for alphas of all 12,415 stocks in our sample that meet this criterion.

Because these stocks have different sample sizes, the histograms of the Sharpe ratios are not simply

the scaled version of the histogram of the t-statistics.

26
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Figure 7: Time-series of the Cross-sectional R2s

Only 4.69% of the t-statistics exceed 2.0 in magnitude, and more than 0.41% exceed 3.0. This

suggests that truly significant alphas are extremely rare. Moreover, the largest Sharpe ratio of all

individual stocks’ alphas is rather modest, about 1.60. Only 0.36% of the alphas have a Sharpe

ratio greater than 1.0. These summary statistics suggest that rare and weak alpha is perhaps the

most relevant scenario in practice.

Throughout we assume alphas do not vary over time. If alphas are driven by some observable

characteristics, then it is possible to construct a factor using this characteristics via cross-sectional

regressions, which turns “alpha” into risk premia. In this regard, alphas are meaningless without

reference to a specific factor model. Extracting more “factors” out of alphas would lead to even

smaller arbitrage profits.

7.3 Performance of Arbitrage Portfolios

Finally, we compare arbitrage portfolios based on various strategies, including the optimal strategy,

the cross-sectional regression (CSR) approach, the multiple-testing based procedure (BH), and Lasso

approach. The ridge approach is omitted, since it is equivalent to the CSR.

Specifically, at the end of each month, we calculate optimal portfolio weights using these strate-

gies. The Sharpe ratios of different strategies are not influenced by risk version, though the cumula-

tive returns are. So when compare cumulative returns, we normalize all strategies to have the same

(ex-post) volatility for comparison purpose. We have also provided a time-series plot in Figure xxx

of the perceived Sharpe ratio estimated using 12.

We observe a few important findings. First and foremost, there is clear gap between the perceived

Sharpe ratio and the realizable Sharpe ratios by all strategies. The former is averaged around 2.0,
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Figure 8: Histograms of the t-Statistics and Sharpe Ratios of Estimated Alphas

Note: The figure provides the histograms of the t-statistics (left) and Sharpe ratios (right) of estimated alphas for

all tickers in our sample with at least 60 months of data. The total number of tickers available is 12,415.

and can sometimes exceed 5.0 or 6.0. The optimal strategy and CSR appear to dominate the BH

and Lasso. The reason that BH underperform is due to its conservativeness, whereas for Lasso,

selecting the optimal tuning parameter is difficult, which undermines its performance.
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Appendix A Mathematical Proofs

We start with assumptions needed for results in the main text.

Assumption A1. For each N ≥ 1, the following conditions hold:

(a) The pricing errors α, factors vt, factor loadings β, and idiosyncratic shocks ut are mutually

independent. E(α) = 0, E(vt) = 0, and E(ut) = 0. γ and β satisfy ‖γ‖ ≤ C, ‖β‖MAX ≤ C,

and λmin(βᵀβ) ≥ CN almost surely. vt is i.i.d. across t and its covariance matrix Σv satisfies

C−1 ≤ λmin(Σv) ≤ λmax(Σv) ≤ C.16

(b) αi is i.i.d. across i, with probability density function (pdf) pα(x); |αi| ≤ CNλ for some fixed

constant λ < 0 almost surely.

(c) u has the representation ui,t = σiεi,t. σi is i.i.d. across i with pdf pσ(x); the support of pσ(x)

is (σ, σ̄) satisfying C−1 ≤ σ ≤ σ̄ ≤ C. εi,t is independent of σi, is i.i.d. across i and t, and

has zero mean and unit variance.

Assumption A1 (a) is commonly seen in the literature of factor models. In particular, the

assumption on λmin(βᵀβ) requires that all factors are pervasive. (b) and (c) suggest that the signals

in our model are weak, in that as N increases their magnitudes shrink towards 0, whereas volatilities

are bounded.

Assumption A2. For each N ≥ 1 and all (i, t), εi,t is normally distributed.

Assumption A2 imposes the normality assumption, which is only needed for a more explicit

description of the arbitrage limit.

Finally, the assumption below specifies the relative rate of N and T in our limiting experiments.

Assumption A3. For each N ≥ 1, it holds that: C−1Nλ ≤ T ≤ CNλ′ for fixed constants λ > 1/3

and λ′ < 1; C−1 ≤ pσ(x) ≤ C for all x ∈ (σ, σ̄); εi,t has a finite twelfth moment.

16We use λmin(A) and λmax(A) to denote the minimum and maximum eigenvalues of A.

32


	Introduction
	Statistical Limit of Arbitrage
	A Toy Model
	Factor Model Setup
	Feasible Near-Arbitrage Opportunities
	Upper Bound on Feasible Sharpe Ratios

	Constructing the Optimal Arbitrage Portfolio
	Estimating Optimal Infeasible Sharpe Ratio
	Alternative Strategies for Arbitrage Portfolios
	Cross-Sectional Regression
	False Discovery Rate Control
	Shrinkage Approaches

	Simulation Evidence
	Numerical Illustration of Theoretical Predictions
	Comparison of Portfolio Strategies in Finite Sample

	Empirical Analysis of US Equities
	Model Performance
	Rare and Weak Alphas
	Performance of Arbitrage Portfolios

	Mathematical Proofs

