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Abstract

Bank-created money, shadow-bank money, and Treasury bonds all satisfy investor’s

demand for a liquid transaction medium and safe store of value. We measure the

quantity of these three forms of liquidity and their corresponding liquidity premium

over a sample from 1926 to 2016. We empirically examine the links between these

different assets, estimating the extent to which they are substitutes, and the amount

of liquidity per-unit-of-asset delivered by each asset. We construct a new broad mone-

tary aggregate based on our analysis and show that it helps resolves the money-demand

instability and missing-money puzzles of the monetary economics literature. Our em-

pirical results inform models of the monetary transmission mechanism running through

shifts in asset supplies, such as quantitative easing policies. Our results on the substi-

tutability of bank and shadow-bank money also inform analyses of the coexistence of

the shadow-banking and regulated banking system.
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In a modern financial system, many financial assets provide the liquidity services tradi-

tionally associated with money.1 One of the lessons from the Global Financial Crisis of 2008

is that money creation can migrate outside the commercial banking system, with securi-

ties such as repurchase agreements and asset-backed commercial paper filling the traditional

roles of money (Gorton (2010); Lucas and Stokey (2011)). Academic research has begun

to formally explore the expanded universe of monetary financial assets. Krishnamurthy and

Vissing-Jorgensen (2012) show that U.S. government bonds satisfy investors’ need for trading

liquidity and a safe store-of-value, two of the central functions of money. Greenwood, Hanson

and Stein (2015) show that these services are particularly high for short-term government

bonds. Gorton, Lewellen and Metrick (2012), Krishnamurthy and Vissing-Jorgensen (2015)

and Greenwood, Hanson and Stein (2015) show that privately issued safe assets, including

bank debt and commercial paper are a substitute for the services provided by government

debt. Nagel (2016) shows that monetary policy impacts the liquidity premium on U.S. gov-

ernment bonds. Drechsler, Savov and Schnabl (2018) shows that monetary policy impacts

not just the level of deposit rates but also the spreads on deposits relative to other rates,

while Li, Ma and Zhao (2019) show that the supply of government bonds impacts these

deposit spreads.

This paper contributes to this literature. Following Nagel (2016) we consider a liquidity

aggregate of the form:

Qt =

(
(1− λt)(

Dt

Pt
)
ρ

+ λt(
Bt

Pt
)
ρ) 1

ρ

. (1)

Here Dt are nominal bank deposit holdings (checking plus savings), Bt are nominal govern-

ment bond holdings, Pt is the price level, and λt is the fraction of liquidity services provided

by each asset. The first exercise in this paper is to estimate ρ which measures the substi-

tutability between bank deposits and government bonds. We also estimate λt which measures

the liquidity services per unit of asset of government bonds relative to bank deposits. We

then turn to a broader aggregate. We measure the quantity of financial sector debt issued

by banks and shadow banks, but excluding traditional bank deposits. This measure in-

cludes repurchase agreements, commercial paper, and short-term debt of the government

sponsored enterprises and is from Krishnamurthy and Vissing-Jorgensen (2015). We denote

this measure as DNB
t and consider an aggregate Q′t:

Q′t =

(
(1− λt)(

Dt

Pt
)
ρ

+ λt(
B′t
Pt

)
ρ) 1

ρ

. (2)

1Throughout this paper, we use the word “liquidity services” as short-hand for the services provided by
financial assets as a transaction medium, a safe store of value, and collateral services.
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where,

B′t =

(
(1− µt)(

DNB
t

Pt
)
η

+ µt(
Bt

Pt
)
η) 1

η

. (3)

We estimate ρ, η, as well as µt and λt.

We report three principal results. First, we estimate ρ to be around 0.6 for the sample

we analyze running from 1926 to 2016. The value is also quite stable over this long period.

Bank issued money and government bonds provide similar but not identical services. The

result is in contrast to Nagel (2016) who estimates a value of ρ = 1 (i.e. perfect substitutes).

A way of understanding this result is to note that bank deposits provide transaction services

which government bonds do not, while government bonds provide collateral services which

bank deposits do not.

Second, we estimate η to be near one in a sample from 1974 to 2016. That is, non-

transaction financial sector debt and Treasury bonds are near perfect substitutes. One

way of understanding the η = 1 result is that both non-transactional financial sector debt

and Treasury bonds are a safe store of value. Note that η = 1 does not imply that these

assets provide the same quantity of liquidity services per unit of asset. That characteristic

is measured by µ, which we estimate to be on average 0.57, indicating that per-unit-of-

asset, government bonds provide roughly 1.5 times the liquidity services of non-transaction

financial sector debt.

Our last result is that estimating a money demand function using either Qt or Q′t as the

monetary aggregate delivers stable estimates over the entire sample. As noted by Goldfeld

and Sichel (1990), Teles and Zhou (2005), and Lucas and Nicolini (2015), the stability of

the money demand function breaks down around 1980, when money is measured as M1

(currency plus transaction deposits). These authors tie the breakdown to the growth of

money market funds. Our results build on this point by considering the liabilities of the

shadow-bank sector, which includes money market funds but is broader, and the quantity of

government bonds.2

Our empirical results inform theoretical work. First, quantitative easing changes the

relative supplies of government bonds, bank deposits, and private assets held by investors.

In theoretical models such as Williamson (2012), Gorton and He (2016), Rocheteau, Wright

and Xiao (2018), Piazzesi and Schneider (2018), and Diamond (2020), shifts in the supplies

of these assets are central to the monetary transmission mechanism. Our results provide

quantitative guidance on which assets are the relevant ones to be considered, and the degree of

2Our work also builds on the literature on how to aggregate different components of money. See Fisher
(1922), Barnett (1980), and Barnett, Offenbacher and Spindt (1984). The monetary search literature provides
a foundation for the imperfect substitution across different types of money, as in Lagos and Wright (2005)
and Geromichalos and Herrenbrueck (2016).
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substitutability of these assets. If, for example, ρ = 1, then quantitative easing policies that

aim to impact the liquidity premium on bonds can be replicated via conventional monetary

policy. Likewise, the optimal mix between Treasury bills, the Fed’s reverse repo facility and

bank reserves, as in the analysis of Greenwood, Hanson and Stein (2015) and Duffie and

Krishnamurthy (2016), depends on the substitutability of these assets. Thus, the values of ρ

and η are important to modeling the monetary transmission mechanism. Second, as discussed

in Lucas (2001), the quantitative values of the interest and income elasticity of money demand

are needed to answer questions such as, what is the optimal growth rate of money, and,

what is the welfare cost of inflation. For example, the welfare cost of inflation, as in Lucas

(2001), will depend in part on the ability of private agents to use alternatives to currency for

liquidity needs. We provide new estimates based on a broad liquidity aggregate which delivers

a stable money demand function and is thus better suited to answering these questions.

Last, for a collection of issues surrounding banking regulation, the substitutability of bank

deposits, non-bank debt, and government bonds is central. If government bonds and bank

deposits are perfect substitutes in providing liquidity services, then there is less reason that

government policy encourage issuance of private bank deposits. Arguments in favor of narrow

banks and increasing bank capital requirements are thus strengthened. Our results more

broadly inform analyses of the role of shadow-banks in creating money (Gorton and Metrick

(2012), Krishnamurthy and Vissing-Jorgensen (2015), Sunderam (2015), Moreira and Savov

(2017), Xiao (2020), dAvernas and Vandeweyer (2020)) and studies of the coexistence of the

shadow-banking and regulated banking system, as in Hanson et al. (2015) and Begenau and

Landvoigt (2021).

The remainder of the paper is structured as follows: Section 1 presents the model and

empirical specification. Section 2 estimates the level of substitution between bank deposits

and Treasuries. Section 3 broadens the liquidity aggregate to include shadow-bank deposits

and estimates a demand function for this aggregate. Section 4 analyzes the statistical power

of our estimation method. Section 5 concludes. An appendix detailing data sources and

providing a number of robustness checks of our results follows.

1. The Model

In this section, we present our model. Then we discuss how to map the model to the

data, and how we estimate the model.
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1.1. Model Setup

The model is composed of investors, commercial banks, a government, and a central

bank. We model a representative investor, a stand-in for the non-financial sector, that

chooses consumption and investment, receiving utility from its holdings of bank deposits

and government bonds. The liquidity demand is modeled along the lines of Sidrauski (1967)

money-in-the-utility function formulation. As in Barnett (1980), we consider the case where

the investor receives utility over a liquidity aggregate. The model formulation is closely

related to Nagel (2016) and the liquidity aggregate contains Treasuries3. Specifically, we strip

out the decision problems by the government and the central bank, and adopt a general utility

function u(Ct, Qt) (consumption Ct and liquidity Qt), while Nagel (2016) uses log utility (all

of the results also go through under log utility).

Investors directly hold the majority of deposits and a large fraction of Treasuries either

directly or indirectly through passthrough institutions. We assume that the deposit rate idt is

a linear function of the nominal interest rate it. Such a connection can be microfounded by

bank monopoly power or bank regulation. For example, in Nagel (2016), regulatory reserve

requirements pin down,

idt = δit δ < 1. (4)

We are agnostic on the microfoundation and will instead use data to estimate δ.4

The representative investor has utility function:

E0[
∞∑
t=1

βtu(Ct, Qt), ] (5)

which composes both real consumption Ct and a liquidity aggregate Qt. The liquidity ag-

gregate is composed of both deposits and bonds,

Qt =

(
(1− λt)(

Dt

Pt
)
ρ

+ λt(
Bt

Pt
)
ρ) 1

ρ

, (6)

where Dt is the nominal deposits holding, Bt is the nominal bond holdings (we will use

“bonds” interchangeably with “Treasuries” to correspond to the notation Bt in the model),

and Pt is the price level. Note that we will omit currency holdings in our definition of Dt.

3One important aspect of Treasury liquidity is the convenience of rehypothecation in the repo market,
which leads to a high “collateral multiplier”(Infante and Saravay, 2020) similar to the money multiplier.

4In the data, for both checking and savings deposits, the deposit spread it− idt is well approximated by it,
and more than 90% of the spread’s time-series variation is explained by it. The relationship is robust even
after the introduction of interest on excess reserves (IOER). One explanation for such a robust connection
is the monopoly power of commercial banks (Drechsler, Savov and Schnabl, 2017).
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We are interested in how financial assets such as Treasury bonds as well as financial sector

debt are used to meet liquidity and portfolio needs, and less interested in the narrow role

of currency to purchase small-ticket goods. Piazzesi and Schneider (2018) document the

massive payment volume in financial sector claims.

The λt component reflects time-varying liquidity of bonds relative to bank deposits. For

example, in a “flight-to-safety”, large investors may prefer bonds to holding uninsured bank

deposits. The substitution between bonds and deposits is, in general, more stable than

these demand fluctuations, and thus modeled as a constant5 ρ ∈ (−∞, 1]. The elasticity of

substitution is equal to 1/(1 − ρ), and is thus monotone in ρ. It is numerically convenient

to work with ρ rather than the elasticity of substitution.

When ρ = 1, deposits and bonds are perfect substitutes, and the liquidity aggregate is

linear in both deposits and bonds,

Qt|ρ=1 = (1− λt)(
Dt

Pt
) + λt(

Bt

Pt
). (7)

When ρ→ 0, deposits and bonds are neither substitutes nor complements,

Qt|ρ=0 = (
Dt

Pt
)1−λt(

Bt

Pt
)λt . (8)

In this Cobb-Douglas case, the investor’s portfolio allocation into deposits and bonds are

fixed fractions of the investor’s wealth. Thus, the return on bonds or deposits is irrelevant

to the portfolio holdings. When ρ < 0, bonds and deposits are complements, with a limit of

the Leontief function as ρ→ −∞.

Investors are subject to the budget constraint

Dt−1(1 + idt−1)︸ ︷︷ ︸
deposit return

+Bt−1(1 + ibt−1)︸ ︷︷ ︸
bond return

+ At−1(1 + it−1)︸ ︷︷ ︸
risk-free lending return

+ It︸︷︷︸
income

=

PtCt︸︷︷︸
consumption

+Dt +Bt + At︸ ︷︷ ︸
investment

+ Tt︸︷︷︸
transfer

,
(9)

where it is the risk-free borrowing and lending rate, idt is the deposit rate, and ibt is the

one-period bond yield. In each period t, the investor collects returns from deposits, bonds,

and lending, and earns income. Then the investor consumes, lends, and invests in liquid

assets, including deposits and bonds. The final term is a non-distortionary transfer from the

government to the investors, which can be either positive or negative.

From the budget constraint, it is clear that given a level of consumption, by substituting

5In the empirical exercise, we will estimate ρ across different subsamples.
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one unit of lending into deposits at time t, the investor earns a marginal liquidity benefit

∂u(Ct, Qt))/∂Qt · ∂Qt/∂Dt, but at the opportunity cost of losing (it − idt ) on asset returns.

Similarly, by substituting one unit of lending into bonds, the investor earns an additional

liquidity benefit ∂u(Ct, Qt)/∂Qt · ∂Qt/∂Bt, but at the opportunity cost of losing (it − ibt).
Thus the first-order conditions on holdings of deposits and bonds are:

uQ
′(Ct, Qt)Q

1−ρ
t (1− λt)(

Dt

Pt
)ρ−1 = uC

′(Ct, Qt)
it − idt
1 + it

, (10)

uQ
′(Ct, Qt)Q

1−ρ
t λt(

Bt

Pt
)ρ−1 = uC

′(Ct, Qt)
it − ibt
1 + it

. (11)

By dividing the first-order condition of bonds by the first-order condition of deposits on both

sides and rewriting, we find:

it − ibt =
λt

1− λt
(
Bt

Dt

)ρ−1(it − idt ). (12)

We will estimate (12) instead of the first order conditions in (10) and (11). Note equation

(12) does not depend on the utility specification u(C,Q). The economic relation described

by (12) comes from assuming bonds and money in the utility function.

We have not specified the government and the central bank’s policy functions because

they are not required to estimate ρ. The equality (12) is a first-order condition that holds

irrespective of these policy functions and the underlying drivers of the liquidity premium.

Equation (12) has implications for the time-series variation in the liquidity premium that

depend on ρ. Suppose bank deposits and Treasuries are perfect substitutes (ρ = 1). Then

Treasury supply Bt has no impact on the liquidity premium it − ibt , given a fixed deposit

spread it− idt which is a function of the central bank policy rate it. By choosing the nominal

interest rate it, the central bank can simultaneously set the liquidity premium of government

bonds. Next suppose ρ = 0.5. Then both Treasury supply Bt and the nominal interest rate it

have an independent impact on the liquidity premium of Treasury bonds. Moreover, in this

ρ < 1 case, the marginal impact of a change in the deposit spread on the liquidity premium

depends on the ratio Bt/Dt. Effectively, interest rate changes depend on the slope of the

liquidity-demand curve, which depends on quantities outstanding. Likewise, changes in Bt
Dt

depend on the current interest rate, which reflects how high or low the liquidity premium is

at a given point. The key to our approach to equation (12) is recognizing these interactions

between quantities and spread, which will be missed if we worked with a linearized version

of (12).
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1.2. Data and Measurement

We collect data on the quantity of deposits, Treasury bonds, the Treasury liquidity

premium and the deposit spread. Because the frequency of these data differs across series,

to retain the maximum information, we construct the sample at a monthly frequency, setting

quantity variables the same in a single quarter when the data is quarterly, and the same in

a single year when the data is yearly.

The Treasury liquidity premium measure follows Nagel (2016) in construction, and we

extend the measure to 2016 so that this measure covers 1920–2016 at a monthly frequency.

For the sample after 1991, the liquidity premium is measured as the yield spread between

the 3-month general collateral (GC) repo rate and the 3-month Treasury bill rate. The

3-month repo loan is collateralized by Treasuries and thus is virtually free of credit risk.

Compared with a three-month Treasury bill, a 3-month Treasury-backed repo is less liquid.

For the period before 1991, the three-month repo data are not available. We use 3-month

Banker’s Acceptance, which contains minimal default risk because they are backed by the

credit of both banks and the borrowing firm. Therefore, before 1991 the liquidity premium

is measured as the yield spread between the 3-month banker’s acceptance and the 3-month

Treasury bill. Finally, we winsorize the liquidity premium at 0.5% and 99.5% quantile so

that neither extremely large nor small values affect our results.

Figure 1 plots the Treasury liquidity premium series. We note that the liquidity premium

looks relatively constant during the World War II period. During this period, the Fed was

a key factor in price determination in the Treasury market. The Fed promised to buy (or

sell) Treasury bills at 3/8% (substantially below typical peacetime rates of 2% to 4%). The

Fed also offered discount loans to banks against Treasury collateral at 50 basis points below

the general discount rate. Both steps likely had a significant influence on both Treasury

bill rates and other money market rates. These measures also incentivized banks to buy

government debt. See Krishnamurthy and Vissing-Jorgensen (2015) and Whittesley (1943)

for details. We include the WWII period in our main specifications, but present a robustness

check where we drop the WWII period as well as restrict the sample to the period after the

Treasury-Federal Reserve Accord of 1951.

We consider two measures of Treasury supply. From equation (12), we note that the

quantity variable should be Bt/Dt where Bt corresponds to the market value of Treasury

securities held by the agent for whom the model applies. We take this agent to reflect

the non-bank sector, who demands Treasuries and bank deposits to satisfy liquidity needs.

Thus, the relevant quantity measure for Treasuries is the non-bank private sector’s holdings

of Treasuries. We construct this measure as the total quantity of Treasury debt, excluding

intra-governmental holdings such as the Social Security Trust Fund, minus bank and Federal
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Fig. 1. Treasury Liquidity Premium. This figure plots the spread between 3-month
general collateral (GC) repo rate and 3-month Treasury bill rate from 1991 to 2016, and
3-month general Banker’s Acceptances and 3-month Treasury bill rate from 1920 to 1991.

Reserve holdings. We construct this measure using book values, and then multiply by a

factor equal to the ratio of market to book value of all Treasuries outstanding at each date.

This multiple is available beginning in 1942, and varies from 0.90 to 1.10. Prior to 1942,

we use a multiple of one. While our results are not sensitive to using market or par values,

the economics of the model call for using the market value. We call this measure the “net

Treasury” supply. The data on Federal Reserve and bank holdings are from the flow of funds

after 1953, and from FRASER historical data before 1952. The data frequency is yearly from

1920 to 1952, and quarterly from 1953 to 2016. To the extent that bank holdings of Treasuries

are endogenous to the liquidity premium, estimation of (12) will be biased. We construct

a second measure, referred to as “Total Treasury” supply, which is the total quantity of

Treasury debt, at par value, excluding intra-governmental holdings, but including bank and

Federal Reserve holdings. We use the total Treasury supply as an instrument to deal with

the endogeneity concern.

Next, we discuss our measure of Dt. Bank deposits are the primary liquid asset for most

investors in the U.S.6 We measure bank deposits as the sum of checking, savings (including

money market deposit accounts), and small time deposits. We obtain monthly data after

1959 from Federal Reserve Economic Data (FRED) and yearly data covering 1934 to 1959

6We exclude currency in our measurement. In Jan 2021, the total amount of deposits is about $16 trillion
while total currency in circulation is $2 trillion. A significant quantity of the currency in circulation is held
outside the U.S., such as in developing countries where the banking system is underdeveloped or not trusted.
Refer to this Fed Blog for more information.
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from the Federal Deposit Insurance Corporation (FDIC ) historical bank data. Thus,

Dt = Dchecking,t +Dsaving,t +Dsmall time,t. (13)

We plot this series in Figure 2.

We also consider a broader measure of deposits, based on Krishnamurthy and Vissing-

Jorgensen (2015). Their measure includes large time deposits, wholesale bank deposits such

as repos, Eurodollars, and commercial paper, as well as short-term debt issued by shadow

banks, such as money market funds and the government sponsored enterprises. The con-

struction of the measure nets out intra-financial sector holdings of debt, so that the measure

corresponds to the non-financial sector holding of short-term financial sector debt.7 We refer

to this measure as “KVJ deposits.”

As noted earlier, Dt is likely to be correlated with the liquidity premium, potentially

leading to a bias in estimation. We will use total Treasury supply as an instrument for Bt
Dt

in

our estimation. We also consider regressions, similar to Nagel (2016) and Greenwood, Hanson

and Stein (2015), where we use seasonal variation in Treasury receipts as an instrument.

Figure 2 plots the four quantity series we use, all plotted as fractions to GDP. The two

measures for Treasury supply comove, with gaps noticeable during the World War II period

when banks purchased a considerable quantity of Treasury debt, and during the last decade,

when changes in financial regulation have incentivized banks to hold more Treasury debt

and the Fed significantly increased its holding of Treasuries due to unconventional monetary

policies. The two deposit measures also move together, but they clearly begin to separate

post-1980 with the rise of non-bank intermediation. The KVJ Deposits measure captures

the non-bank or “shadow bank” sector. Finally, we note that these quantities vary at a low

frequency. This observation is important in estimation, as we make clear.

On the price side, the aggregate deposit spread is

it− idt =
Dchecking,t

Dt

(it− ichecking,t) +
Dsaving,t

Dt

(it− isaving,t) +
Dsmall time,t

Dt

(it− ismall time,t) (14)

An alternative aggregation based on a CES aggregator is provided in Appendix B, where we

show that the main results are robust to this different aggregation.

Deposits spread data are available after 1987, but this short period is insufficient for the

7Krishnamurthy and Vissing-Jorgensen (2015) construct the ”net short-term debt” of the financial sector
as the sum across each firm in the financial sector (banks and non-bank) of:

short-term debt liabilities− (short-term debt assets + government supplied liquid assets).

We use the net short-term debt measure and add back the government-supplied liquid assets, which then
corresponds to the short-term debt liabilities of the financial sector held by the non-financial sector.
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Fig. 2. Treasury Debt and Financial Sector Deposits. This figure plots our two
measures of Bt, relative to GDP, as Total Treasury Debt/GDP and Net Treasury Debt/GDP.
We also plot our two measures of Dt, as the sum of checking, savings, and time deposits
(Deposits) and the broad measure of financial sector debt (KVJ deposits), again as a ratio
to GDP.

main purpose of the paper. We have noted that deposit spreads vary with the level of the

interest rate, a relation that can arise from bank regulation (Nagel, 2016) or deposit market

competition (Drechsler, Savov and Schnabl, 2017). We project the deposits spread defined in

equation (14) on the federal funds rate, which is available back to the 1920s. The projection

coefficient is obtained by a linear regression of the monthly deposit spread data after 1987

onto the federal funds rate (without constant term)8. We find that the R2 in this regression

is about 80%. Therefore, we use the following linear approximation:

it − idt ≈ 0.34it (15)

Before the banking deregulation of the early 1980s, Regulation Q restricted the payment

of explicit interest on demand deposits, but banks often paid implicit interest to sidestep the

restriction. Startz (1979) finds that accounting for this implicit interest results in a deposits

spread half of the nominal interest rate, which is similar to our estimated sensitivity in (15).

Therefore, we will use the approximation in (15) throughout the sample period from the

1920s to 2016. Our main results are robust to having a different approximation before and

after regulation Q. 9

8If we include the constant term, the coefficient is similar and the constant term is insignificant. Our
results are similar using this alternative projection.

9Refer to Appendix C.9 for details.
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Figure 3 plots the individual deposit rate data in the left panel and the corresponding

deposit quantities in the right panel.
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(a) Rates
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(b) Volume

Fig. 3. Comparison of Deposit Rates and Volume. Panel (a) compares different
deposit rates and the Fed Funds rate at a quarterly frequency. Deposits rates are calculated
as interest expenses over the total amount of deposits for each category, using the Call Report
data. Panel (b) compares the quantities of different deposits as fractions of GDP. Data are
from Flow of Funds at a monthly frequency.

Finally, we use monthly Chicago Board Options Exchanges Volatility Index (VIX ) to

approximate the flight-to-liquidity shock λt, following Nagel (2016). We assume the form

λt
1− λt

= βλ · VIXt (16)

and estimate the coefficient βλ. The idea here is that Treasuries are fully guaranteed by the

government, while checking and savings deposits are not insured above the FDIC insurance

limit. In a crisis, the “flight-to-quality” effect drives up the liquidity share for Treasury, and

thus the Treasury liquidity premium. The VIX data are only available since 1990. For the

periods before 1990 when the VIX index is not available, we use a linear projection of VIX

on realized volatility of the S&P 500 index, where the projection coefficients are estimated

using the post-1990 data. The construction is limited by the data availability of the S&P

index and starts from 1926, and we use monthly average VIX throughout the sample.
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Summarizing, the model in equation (12) prescribes the following empirical relationship:

lpt ∝ VIXt(
Bt

Dt

)ρ−1it, (17)

where lpt is the Treasury liquidity premium.

2. Model Estimation

In this section, we estimate ρ, the coefficient of substitution between Treasuries and

deposits in equation (12) as well as λt, which parameterizes the liquidity services-per-unit-

of-asset of Treasuries and bank deposits.

2.1. Interaction between Supply and Fed Funds Rate

We first replicate the results of Nagel (2016), which estimates a linearized version of

equation (17). The first three columns of Table 1 should be compared to Table III of Nagel

(2016). The estimates are quite close to that table, and the discrepancies are likely due to

slight differences in data and sample.10 In the first column, we see that the federal funds rate

strongly comoves with the liquidity premium. In column (2), we see that Treasury supply

has significant explanatory power for the liquidity premium, as shown in Krishnamurthy and

Vissing-Jorgensen (2012). In the third column, the Krishnamurthy and Vissing-Jorgensen

(2012) result is overturned: Treasury supply loses its explanatory power if the federal funds

rate is included in the regression. Indeed, the coefficient of log(Total Tsy/GDP) in column

(3) is near zero and statistically insignificant.

Columns (4) and (5) replace the quantity variable in the regression. In column (4), we

follow the theory and use the net Treasury variable to correspond to the Treasury holdings of

the non-bank sector. In column (5), we use Net Treasury/Deposits as the measure of Bt
Dt

, as

prescribed by equation (17). Using the theoretically motivated quantity variable improves

the fit in the regression: the R2 rises from 60% in (2) to 64% in (5). Additionally, the

quantity variable is a statistically significant driver of the liquidity premium, in line with

Krishnamurthy and Vissing-Jorgensen (2012).

Table 2 shows that accounting for the non-linear terms in equation (17) are important in

the estimation. Relative to Table 1 we extend the sample to 2016. The first three columns

show the linear regression with the extended sample. The coefficient on the Treasury supply

variable changes slightly and remains significant. The rest of the columns include non-linear

10Our sample starts from 1926 when the S&P 500 index is available in WRDS, while Nagel (2016) further
goes back to 1920. We also winsorize the liquidity premium series.
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Table 1: Replication of Nagel (2016) Table III

Dependent variable: liquidity premiumt

(1) (2) (3) (4) (5)

FFRt 10.78 10.76 10.29 9.94
(1.06) (1.12) (1.03) (0.90)

VIXt 1.17 0.37 1.17 1.08 1.45
(0.21) (0.30) (0.22) (0.22) (0.33)

log(Total Tsyt
GDPt

) −48.65 −0.29

(14.41) (5.22)

log(Net Tsyt
GDPt

) −8.26

(5.44)

log( Net Tsyt
Depositst

) −17.41

(6.22)

Constant −27.97 −12.42 −28.10 −35.39 −39.08
(6.91) (11.57) (7.64) (9.11) (9.57)

Observations 1,032 1,032 1,032 1,032 936
R2 0.60 0.20 0.60 0.61 0.64

Notes: The liquidity premium is in basis points. It is measured as the spread between
three-month bankers acceptance and three-month T-bill before 1991, and the spread
between the three-month GC term repo and three-month T-bill afterward. We winsorize
the liquidity premium at 0.5% and 99.5% quantiles. FFR is the effective federal funds rate
in percentage points. VIX represents CBOE S&P 500 implied volatility index. Before
1990, the index is not available, so we calculate a proxy index as the projection of VIX
on the realized volatility of the S&P 500 index’s daily return in each month from 1926
to 1990, where the projection coefficients are estimated with data after 1990. For the
log(Total Tsy/GDP) term, GDP is the U.S. nominal GDP, and Total Tsy is the total
amount of government debt, excluding intra-governmental holdings. Net Tsy is the total
market value of Treasuries excluding intra-governmental holdings, minus bank and Federal
Reserve holdings. Deposits include checking, savings, and small-time deposits. The
sample period is from 1926 to 2011 (we limit the data at 2011 to make results in this
table more comparable to Nagel (2016)) for columns 1-5, and 1934–2011 for column 6
(deposits data are available starting from 1934). HAC standard errors with 12 lags are
shown in parentheses.
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terms. In column (5), we include both log(Net Tsy/Deposits) and the interaction between

the federal funds rate and log(Net Tsy/Deposits). The coefficient on the federal funds rate

falls, while the interaction term is negative and highly significant. We also note that the

regression R2 rises from 60% in column (1) to 68% in column (5).

We can interpret these higher-order terms by expanding (12). To a first-order approxi-

mation around the average value of Bt/Dt (denoted by x0), we get

(
Bt

Dt

)ρ−1 ≈ xρ−10 + xρ−10 (ρ− 1)

(
log(

Bt

Dt

)− log(x0)

)
. (18)

In this case, the coefficient on log(Bt/Dt) is proportional to xρ−10 (ρ − 1), and the Nagel

(2016) result that supply has no explanatory power for the liquidity premium leads to the

conclusion that ρ is not statistically different than one. If we include more terms from the

expansion of (17), we find

lpt ∝ (1− (ρ− 1) log(x0)) · VIXtit + (ρ− 1) · VIXt log(
Bt

Dt

)it (19)

In column (6) of Table 2, we report a regression based on the higher-order terms in equation

(19). Including these interaction terms substantially improves the fit of the model: the R2 in

column (6) is 71%, despite only including two explanatory variables. The coefficients on the

triple-interaction term are also significantly negative as the theory suggests. The significant

and negative coefficient on the triple-interaction term is robust to including the individual

terms, FFRt, VIXt, or log(Net Tsy/Deposits) in the regression.

In terms of economics, when ρ 6= 1, the interaction terms capture that the marginal

impact of a change in the deposit spread depends on the quantity of bonds and deposits.

For example, with more bonds outstanding, liquidity premia are smaller and the marginal

impact of a change in monetary policy is likewise smaller. The same logic applies in reverse

for a change in the quantity of bonds. Thus, including the interaction terms is economically

meaningful.

In statistical terms, a linear regression with the federal funds rate and bond supply will

ascribe most of the explanatory power for the liquidity premium to the federal funds rate.

In the data, there is considerable high frequency variation in both the federal funds rate

and the liquidity premium. The maximum value of the federal funds rate is more than 100

times its minimum value. In contrast, the Treasury supply is slow-moving. Thus in a linear

regression, it will be difficult to pick-out a relationship between Treasury supply and the

liquidity premium. Section 4 makes this point explicit via regressions on simulated data.

We next consider a log specification that can explicitly deal with these interaction effects.
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Table 2: The Interaction Effects between Treasury Supply and the Fed Funds Rate

Dependent variable: liquidity premium

(1) (2) (3) (4) (5) (6)

FFRt 10.51 9.68 5.75 4.89
(1.01) (0.88) (1.23) (1.42)

VIXt 1.13 1.12 1.37 1.36 1.36
(0.20) (0.59) (0.33) (0.30) (0.30)

log( Net Tsyt
Depositst

) −45.38 −14.54 10.72

(12.98) (6.01) (7.43)

FFRt*log( Net Tsyt
Depositst

) −4.83 −6.31

(1.37) (1.92)

VIXt*FFRt 0.28
(0.05)

VIXt*FFRt*log( Net Tsyt
Depositst

) −0.26

(0.05)

Constant −25.33 −6.52 −33.73 −23.80 −18.80 3.87
(6.34) (12.83) (8.92) (6.91) (6.42) (2.66)

Observations 1,092 996 996 996 996 996
R2 0.60 0.22 0.64 0.67 0.68 0.71

Notes: Variable explanations are provided in the notes of Table 1. The sample period is 1926–
2016 for column 1, and 1934–2016 (restricted by the data coverage of deposits) for column
2–6. HAC standard errors with 12 lags are shown in parentheses.
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Taking logs of both sides of (17), we have,

log(lpt) ∝ log(VIXt) + (ρ− 1) log (
Bt

Dt

) + log(it) (20)

and we thus estimate a linear regression in logs, with independent variables of VIXt, log (Bt
Dt

),

and log(it).

Before turning to the results, we offer a word of caution with the log specification. The

model prescribes that since Treasury bonds offer more liquidity services than the less liquid

repo and Bankers Acceptance, the liquidity premium should be positive. In the data, the

liquidity premium is occasionally negative, likely due to measurement error. If this measure-

ment error is additive, then when taking logs, the measurement error blows up for liquidity

premia near zero. In the table that follows, we drop observations with a nonpositive liquidity

premium. The results are similar if we winsorize nonpositive liquidity premiums. We present

a GMM estimation of equation (17) in Section 2.3 that avoids these issues (and significantly

improves the model’s fit).

The results are shown in Table 3. The supply variables in log terms are highly significant,

as can be seen in columns (4) and (5). The R2 also rises with the inclusion of the supply

variables.

From equation (17), the coefficient on the log term of supply corresponds to ρ− 1. Thus,

for the bank deposit measure, we find that ρ = 0.42, with a confidence interval of [0.27, 0.57],

while for the broad financial sector debt measure, we find that ρ = 0.48, with a confidence

interval of [0.28, 0.68]. In both cases, the results indicate that money and Treasury bonds

are imperfect substitutes. The broad deposit measure also appears to a better substitute for

Treasuries. We investigate this possibility further in Section 3.

We also note that the coefficient on log(FFR) is below one, which does not accord with

predictions of the theory. There are at least two plausible reasons. One reason is that FFR

is not a perfect proxy of the actual deposit liquidity value (i.e. the deposit spread), and the

classical measurement-error problem leads to an attenuation bias. Indeed, despite the high

R2 in using the FFR to proxy for the deposit spread, the standard deviation of the residual

error is about 48 basis points. The other reason is that we have winsorized or eliminated

negative liquidity premium, and this approach tends to shrink the coefficients. The first issue

is not a major concern for us since we are focused on estimating ρ, which is not affected by a

measurement error on it−idt as long as it is orthogonal to the quantity ratio. The second issue

is more problematic, since the same bias may appear in the coefficient of log(bond/deposit).

A formal way to address the second problem is to use GMM and estimate (17) directly. We

follow this approach in Section 2.3.
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Table 3: Log Regressions Using Different Debt/Deposits Measures

Dependent variable:

(1) (2) (3) (4) (5)

log(FFRt) 0.58 0.48 0.52
(0.08) (0.08) (0.09)

log(VIXt) 0.63 0.52 0.07 0.73 0.47
(0.16) (0.26) (0.19) (0.22) (0.17)

log( Net Tsyt
Depositst

) −1.14 −0.58

(0.23) (0.15)

log( Net Tsyt
KVJ Depositst

) −1.23 −0.52

(0.22) (0.20)

Constant −3.76 −3.48 −2.75 −4.24 −3.77
(0.51) (0.77) (0.55) (0.66) (0.49)

Observations 996 903 974 903 974
R2 0.40 0.25 0.28 0.46 0.46

Notes: “KVJ deposits” are the amount of financial sector short-term liabilities
as in Krishnamurthy and Vissing-Jorgensen (2015). Other variable explanations
are provided in the notes of Table 1. The main sample period is 1926–2016,
but shrinks when data availability is constrained by dependent variables. HAC
standard errors with 12 lags are shown in parentheses.
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2.2. Instrumental Variables Estimation

The results we have presented are subject to an endogeneity concern. Both the net

Treasury supply and bank deposits reflect choices of banks, that are plausibly driven by

the liquidity premium. Thus, OLS will lead to a biased estimate of ρ, and we need an

instrument. We first present regressions using the total supply of Treasuries, set by fiscal

policy, as the instrument. It is unlikely that this total supply responds to the liquidity

premium, so that the endogeneity concern is allayed with this instrument. There is still

a possibility of omitted variable bias, to the extent that both fiscal policy and changes in

liquidity demand are correlated with the business cycle. We follow Greenwood, Hanson and

Stein (2015) and Nagel (2016) by running a difference specification where we use seasonal

variation in tax receipts as an instrument for Treasury supply, and using changes in Federal

Funds future as an instrument for monetary policy shocks.

Table 4 presents the results using Total Treasury/GDP and log(Total Treasury/GDP) as

the instruments for the quantity ratios. Note that while we have argued that this regressor

is not the appropriate measure for the non-bank holdings of Treasury securities in equation

(12), it is the regressor used in Nagel (2016). The first stage in the instrumental variables

regression, reported in the appendix establishes relevance: shifts in total Treasury supply

strongly correlate with shifts in the debt-to-deposits ratio and the F -statistic is well above

10. We use both log(Total Tsyt/GDPt) and Total Tsyt/GDPt as instruments to capture a

non-linear relationship in the first-stage.

Panel A of the table presents the log specification. Columns (1) and (2) are the same

OLS regressions as columns (4) and (5) of Table 3. Columns (3) and (4) present the IV. The

estimate of ρ is 0.21 in column (3), with a one standard-error range of [−0.11, 0.53]. The

estimate in column (4) is 0.61 with a range of [0.39, 0.83]. The broader deposit measure is a

closer Treasury substitute than the narrow deposit measure.

Panel B of the table presents the regression in levels, akin to Nagel (2016). We primarily

note that these IV regressions support the existence of a supply effect for the liquidity

premium, in contrast to the result from that paper.

We next follow Greenwood, Hanson and Stein (2015) and construct an instrument using

monthly dummies that capture the strong cyclical variations in T-bill supply. As these

authors show, the cyclicality is driven by calendar cycles in tax receipts. The instrument

can additionally deal with any omitted variable biases in our estimation. Furthermore, we

instrument FFR changes with expected changes from the federal funds futures market as in

Nagel (2016). Specifically, we take average price difference in month t − 2 of federal funds

futures for month t − 1 and t to instrument for the actual changes of FFR from t − 1 to t.

The results are in Table 5. These regression results use the monthly differences of variables
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Table 4: OLS and IV Regressions in Logs

Panel A: Dependent variable: log(liquidity premiumt)

OLS IV

(1) (2) (3) (4)

log(FFRt) 0.48 0.52 0.44 0.55
(0.08) (0.09) (0.10) (0.09)

log( Net Tsyt
Depositst

) −0.58 −0.79

(0.15) (0.32)

log( Net Tsyt
KVJ Depositst

) −0.52 −0.39

(0.20) (0.22)
log(VIXt) 0.73 0.47 0.73 0.52

(0.22) (0.17) (0.23) (0.17)

Observations 903 974 903 974
R2 0.45 0.46 0.43 0.46

Panel B: Dependent variable: liquidity premiumt

OLS IV

(1) (2) (3) (4)

FFRt 0.09 0.10 0.20 0.19
(0.01) (0.01) (0.03) (0.03)

log( Net Tsyt
Depositst

) −0.19 −0.36

(0.06) (0.26)

log( Net Tsyt
KVJ Depositst

) −0.05 −0.39

(0.05) (0.19)
VIXt 0.01 0.01 0.02 0.02

(0.003) (0.002) (0.01) (0.01)

Observations 903 974 903 974
R2 0.63 0.60 0.54 0.52

Notes: “KVJ deposits” are the amount of financial sector short-term liabilities as
in Krishnamurthy and Vissing-Jorgensen (2012). Other variable explanations are
provided in the notes of Table 1. We instrument log(Debt/Deposits) by log(Total
Tsy/GDP) and (Total Tsy/GDP) in columns (3) and (4). The main sample period
is 1934–2016, while the availability of deposits data can shrink the sample size. HAC
standard errors with 12 lags are shown in parentheses.
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given the nature of the instrument. The first stage in these regressions is reported in the

appendix.

Panel B in the table replicates Table IV in Nagel (2016). For comparison, we only use

data from 1991 to 2011, and use T-bill/GDP as the quantity measure. Both OLS and IV

results are quite similar to Nagel (2016), although there are slight discrepancies that we

have not been able to resolve. The general pattern is that the change in the quantity is

highly significant in both the OLS and IV regressions, but the coefficients are larger in the

IV regressions. This difference is plausibly due to the omitted variable concern: in a crisis,

Treasury supply expands and liquidity premia rise, giving rise to a positive relation between

supply and liquidity premia in the OLS regressions. The instrument deals with this issue

and recovers the true relation, which is more negative than the OLS result.

In Panel A, we follow our theoretical model and use the ratio of Treasuries to deposits

as the quantity measure, while continuing to use the same instruments. We note again the

strong statistical significance of the quantity variable, and the larger-magnitude coefficient

on the IV result compared to the OLS result.

2.3. GMM Estimation

We next turn to a GMM estimation of the model. The GMM results are broadly consis-

tent with the results we have presented thus far, indicating a value of ρ slightly larger than

one-half. Additionally, the standard errors of the estimate of ρ are lower, while the regression

R2s are higher than our earlier specifications. As we show via simulation in Section 4, the

GMM estimation has more power than the other approaches we have presented.

The optimality condition of the representative investor in the model gives equation (12).

Under the assumption that the model describes the liquidity premium and that the residual

represents a measurement error, instruments for the GMM may include st, VIXt, Bt/Dt,

and the constant 1, which are in the information set of the investor at date t. Therefore, the

moment conditions are:

E[εt ·


st

VIXt

Bt/Dt

1

] = 0. (21)

There are two parameters (βλ, ρ) to be estimated while there are four moment conditions.

Therefore, the above orthogonality conditions result in an over-identified system. We check

the model fit with the standard GMM J-test.

Given the bias concern with the OLS regressions, it is possible that the measurement error
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Table 5: Difference Regressions: OLS and IV.

Panel A: Dependent variable: ∆liquidity premiumt

OLS IV

(1) (2) (3) (4) (5) (6) (7) (8)

∆FFRt 9.56 7.06 9.40 8.61 6.60 8.48
(3.86) (3.38) (4.44) (3.43) (3.38) (3.40)

∆ log( T-billt
Depositst

) −52.18 −45.73 −42.32 −105.98 −103.46 −89.32

(16.05) (17.75) (17.89) (24.47) (25.56) (28.19)

∆ log( T-billt−1

Depositst−1
) 51.49 95.64

(17.99) (27.97)
∆VIXt 0.52 0.62 0.61 0.56

(0.18) (0.22) (0.22) (0.19)

R2 0.08 0.10 0.11 0.16
Weak instruments test

CD statistic 17.12 11.4 10.74 8.27
Critical value 6.56 6.56 6.23 5.87

Observations 247 247 247 246 246 246 246 246

Panel B: Replication of Table IV in Nagel (2016)

OLS IV

∆FFRt 9.56 6.79 9.84 8.61 6.30 10.60
(3.86) (3.35) (4.39) (3.43) (3.29) (3.52)

∆ log(T-billt
GDPt

) −50.11 −43.38 −39.34 −89.84 −86.96 −79.22

(15.24) (16.70) (17.28) (22.76) (23.92) (24.67)

∆ log(T-billt−1

GDPt−1
) 51.32 56.64

(16.63) (18.66)
∆VIXt 0.52 0.62 0.60 0.56

(0.18) (0.22) (0.22) (0.19)

R2 0.08 0.10 0.11 0.16
Weak instruments test

CD statistic 17.12 12.36 11.5 8.69
Critical value 6.56 6.56 6.23 5.87

Observations 247 247 247 246 246 246 246 246

Notes: T-bill is the total value of T-bills outstanding. Definitions of other variables are provided
in the notes of Table 1. Data are at monthly frequency and limited to the range 1991–2011 to be
comparable with Nagel (2016). In the weak instrument tests, a higher Crag-Donald statistic means that
the instrument is less likely to be weak. The critical values for the tests are from Table I of Stock and
Yogo (2002). Newey West standard errors with 12 lags are reported in the parentheses.
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Table 6: GMM Estimation of ρ

Measurement of B/D

Net Tsy
Deposits

Net Tsy
KVJ Deposits

Net Tsy
Deposits

Net Tsy
KVJ Deposits

(1) (2) (3) (4)

ρ 0.632 0.681 0.664 0.601
(0.099) (0.213) (0.159) (0.184)

βλ 0.011 0.010 0.012 0.009
(0.001) (0.003) (0.002) (0.002)

p-value of J-test 0.712 0.689 0.934 0.814
Total Treasury IV? No No Yes Yes
Variations explained 70.2% 68.6% 70% 69.2%
Observations 996 972 996 972

Notes: KVJ deposits is the measure of financial sector short-term liabilities in Krishna-
murthy and Vissing-Jorgensen (2012). Refer to Table 1 for other variable definitions. In
column (1) and (2), we estimate the GMM system as in equation (21). In column (3) and
(4), we use Total Tsy/GDP and (Total Tsy/GDP)2 as instruments instead of the Bt/Dt

ratio, i.e., we replace the moment

E[(Bt/Dt) · εt] = 0

by
E[(Total Tsyt/GDPt) · εt] = 0

E[(Total Tsyt/GDPt)
2 · εt] = 0

HAC standard errors with 12 lags are reported in parentheses.

is not orthogonal to Bt/Dt. For example, a liquidity demand shock that is not captured by

changes in VIX will lead to a misspecified estimation equation, and if the banking sector’s

Treasury holdings and deposit issuance are a function of this demand shock, the measurement

error will not be orthogonal to Bt/Dt. To deal with this concern, we follow our earlier IV

strategy and use Total Treasury Supply/GDP (which is not a function of bank holdings),

and its square, as instruments in place of Bt/Dt.

Results are shown in Table 6. We apply the two-step GMM method and a heteroskedas-

ticity and autocorrelation consistent (HAC) residual covariance structure of 12 lags. The

model fits the data well, as the J-tests have large p-values.

The estimates of ρ are around 0.6, consistent with earlier estimates. There are no statis-

tically significant differences across the four specifications in the table, and the instruments
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have no detectable effect on the estimate of ρ. This last point is perhaps not surprising

given that the regression R2 is about 70%, so the likelihood of model measurement error is

also low. All of the estimates are statistically different from both zero and one. Thus, we

conclude that both bank money and the broad financial sector debt measure are imperfect

substitutes for Treasuries.

We also note that the non-linear model fits the data much better than the log-linear model

of the previous sections as well as the model of Nagel (2016). We get an R2 of around 45%

in the log-linear model. This fit is far worse than the R2 = 70.2% from the non-linear model.

Therefore, the GMM estimation captures meaningful variation in the liquidity premium that

is missed by the log-linear model.

Table 7: Model Explanatory Power from Different Components

Model Inputs Fractions of Variations Explained

Only Net Tsy/Deposits 11.1%
Only FFR 57.1%
Only VIX 0.0%
Net Tsy/Deposits + FFR 63.4 %
Net Tsy/Deposits + VIX 12.1 %
FFR + VIX 63.0%
Full Model 70.2%

Notes: Refer to Table 1 for variable definitions. We calculate the variations explained
by various model components, using parameters estimated from column (1) of Table
6. For example, in the first case, among the input data, we set VIXt and st to their
mean values and only allow the variations in Bt/Dt. Then we calculate the fraction
of variation explained by these partial inputs.

To provide a sense for how much each component of the model contributes to the ex-

planatory power of the liquidity premium, we list the explained fraction of variation due to

different model components in Table 7. The fraction of variation is calculated as 1 - resid-

ual variance / total variance. With only Net Treasury/Deposits data as inputs (FFR and

VIX are set as their time-series averages, respectively), the fraction of variation explained

is 11.1%. With both Net Treasury/Deposits and FFR, the model explains 63.4% of the liq-

uidity premium variation. With all of the independent variables, the model explains 70.2%

of the variation in the liquidity premium.

In the left panel of Figure 4, we plot the model generated liquidity premium using all

three explanatory variables as well as the actual liquidity premium. The federal funds rate

component of the model in equation (12) helps explain the high-frequency ups and downs,

while the quantity of Treasuries/deposits modifies the general shape of the predicted liquidity
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premium and helps explain the liquidity premium at a low frequency. Finally, the variation

in VIX, capturing the flight-to-quality effects, help explain spikes in the liquidity premium.

The right panel of the Figure plots the model predicted federal funds rate, using the liquidity

premium, VIX, and the supply variable as explanatory variables. The model fit is also quite

good for the federal funds rate. A point worth making is that the fit, estimated over the entire

sample, works as well pre-1980 as post-1980. The fit for the federal funds rate suggests that

our model may help lead to a stable estimate for money demand. We explore this possibility

in Section 3.
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Fig. 4. Model Predictions versus Data. This figure compares the model predicted
Treasury liquidity premium and federal funds rate versus the data counterparts. The model
generates the liquidity premium as lpt = stβλVIXt(Bt/Dt)

ρ−1, where st is the deposits spread,
VIXt is the constructed VIX, Bt/Dt is the Treasury/deposits ratio, and (βλ, ρ) are set to
the estimated values in column 3 of Table 6. The model generates the federal funds rate as
rt = lpt/

(
βλVIXt(Bt/Dt)

ρ−1) /δ, where δ is the projection coefficient of deposits spread on
FFR.

The λt in the model measures the liquidity services provided by one unit of Treasury

bonds, while 1 − λt measures the liquidity services provided by one unit of bank deposits.

Given that deposits are generally perceived as a more convenient form of transactions, we

may expect that the share of Treasury liquidity should be below 50%, i.e., λt < 50%. In

Figure 5, we plot the estimated λt, which comes from the measurement equation

λt
1− λt

= βλVIXt (22)

using the estimated βλ = 0.012. As shown in Figure 5, despite the sizable variation in

the liquidity premium, the measured λt is never above 0.5, consistent with our assertion.
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The 10-year moving average of measured λt is also quite stable. Over the entire sample, λt

averages 0.174.
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Fig. 5. The Liquidity Share of Treasuries (λt in the model)

2.4. Subsample Analyses

We present results for different subsamples in Table 8. In columns (1) and (2), we drop

the WWII period where we have noted that the Fed played an unusually large role in setting

prices in the money market. In columns (3) and (4), we consider only the sample post

Fed-Treasury accord of 1951. This regression also drops the period surrounding the Great

Depression. In columns (5) and (6), we consider only the sample after 1980, with the ending

of Regulation Q. We present results for both measures of money. The analysis paints a

consistent picture: the value of ρ is around 0.6 across samples and for both measures of

deposits.

3. Money, Near-Money, and Bonds

In this section, we expand our results in two directions. First, we consider how to expand

our estimation to incorporate other assets that provide liquidity services. Our results here

should be seen as a step in the direction of tracing out the full set of assets that provide

liquidity services. Second, we use these results to construct a new monetary aggregate and

revisit existing questions regarding the stability of the money demand equation.
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Table 8: Subsample Analyses

No WWII Post Accord Post 1980

Measure of B/D
Net Tsy
Deposits

Net Tsy
KVJ Deposits

Net Tsy
Deposits

Net Tsy
KVJ Deposits

Net Tsy
Deposits

Net Tsy
KVJ Deposits

(1) (2) (3) (4) (5) (6)

ρ 0.639 0.592 0.624 0.542 0.638 0.584
(0.141) (0.174) (0.122) (0.157) (0.118) (0.163)

βλ 0.012 0.009 0.011 0.009 0.011 0.009
(0.001) (0.002) (0.001) (0.002) (0.001) (0.002)

p-value of J-test 0.728 0.794 0.669 0.73 0.1 0.062
Variations explained 69.1% 68% 70.4% 69.5% 67.6% 67.6%
Observations 876 852 780 756 432 408

Notes: This table shows subsample GMM estimations of parameters ρ and βλ. Columns
of “No WWII” excludes the period around WWII (1942–1951), and columns of “Post
Accord” restrict the sample to post-1951. In all columns, we use total Treasury/deposits
and (total Treasury/deposits)2 as instruments in place of B/D. HAC standard errors
with 12 lags are reported in parentheses.

3.1. Near Money

We have shown that Treasuries and bank deposits are imperfect substitutes, providing

different liquidity services. Where do other money-market assets fall? In earlier sections,

we report that the coefficient estimate for ρ for KVJ-deposits was somewhat higher than

for bank deposits. The KVJ-deposit measure includes assets such as money market funds,

repos, commercial paper, and GSE debt. These are likely more similar to Treasury bonds

than traditional transaction deposits. In this section, we investigate a nested demand system

that places Treasury bonds and non-bank debt in an inner layer, and bank deposits in the

outer layer.

Agents derive utility over Ct and Qt as in our baseline model, but we redefine Qt. The

aggregate liquidity bundle is,

Q′t =

(
(1− λt)(

Dt

Pt
)
ρ

+ λt(
B′t
Pt

)
ρ) 1

ρ

. (23)

where,

B′t =
(
(1− µt) ·

(
DNB
t

)η
+ µt ·Bη

t

)1/η
. (24)
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Here Dt is the total amount of deposits as defined in previous sections, B′t is the amount of

“composite bonds”, which is a CES aggregator over non-bank deposits, DNB
t , and Treasuries,

Bt. We measure Dt as checking, savings, and time deposits. We measure DNB
t as KVJ-

deposits minus Dt.

Denote the yield on Treasury bonds as iTsy
t and the yield on non-bank deposits as iNBt .

Then the first order condition over Treasury bonds and non-bank deposits implies,

it − iTsy
t =

µt
1− µt

(
Bt

DNB
t

)η−1(it − iNBt ). (25)

Using the notation `Tsy
t = it − iTsy

t and `NBt = it − iNBt , we can rewrite this equation as,

`Tsy
t =

µt
1− µt

(
Bt

DNB
t

)η−1`NBt . (26)

Moreover, we define the liquidity premium index for the bundled “bond” as

`Bt =

(
(1− µt)−

1
η−1
(
`NBt

) η
η−1 + µ

− 1
η−1

t

(
`Tsy
t

) η
η−1

)(η−1)/η

(27)

With this definition, then we arrive at another estimation equation:

`Bt =
λt

1− λt
(
B′t
Dt

)ρ−1`Dt (28)

We proxy for the relative demand ratio, λt/(1− λt) and µt/(1− µt) using VIX:

λt
1− λt

≈ βλVIXt

µt
1− µt

≈ βµVIXt

In total, we need to estimate four parameters, ρ, η, βλ, and βµ. We estimate these parameters

from the equation system (26), (27), and (28).

For estimation purpose, we denote data with tilde and write the estimation versions of

(26), (27), and (28) as

˜̀Tsy
t =

µt
1− µt

(
Bt

DNB
t

)η−1 ˜̀NB
t + εTsy

t (29)

˜̀B
t =

(
(1− µt)−

1
η−1

(
˜̀NB
t

) η
η−1

+ µ
− 1
η−1

t

(
˜̀Tsy
t

) η
η−1

)(η−1)/η

(30)

˜̀B
t =

λt
1− λt

(
B′t
Dt

)ρ−1 ˜̀D
t + εBt (31)
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The moment conditions are:

E[


µt

Bt/D
NB
t

`NBt

1

 εTsy
t ] = 0 (32)

E[


λt

B′t/Dt

`Dt

1

 εBt ] = 0 (33)

We also redefine the measures of the liquidity premium. In previous sections, we measure

the Treasury liquidity premium as the spread between repo (and Banker’s Acceptances) and

Treasuries. However, to the extent that repo is also priced to reflect liquidity services, repo

rates will also reflect a liquidity premium, and this measure will underestimate the full Trea-

sury liquidity premium. We use P2-rated commercial paper (P2CP) as the benchmark rate

for an asset that does not offer any liquidity services, and construct the Treasury liquidity

premium as the spread between 90-day P2CP and 90-day Treasury bills. Note that a disad-

vantage of using this spread is that it will also reflect credit risk and thus adds some noise to

our estimation procedure. This is one reason that we have used repo rates as the benchmark

in previous sections. The other reason is that P2CP data is only available monthly from

1974 onwards. We obtain this data from the Federal Reserve.

We measure the Treasury liquidity premium as the spread between 90-day P2CP rate

and 90-day T-bill rate.

We construct the non-bank deposit liquidity premium in two different ways:

• The spread between 90-day P2-rated commercial paper (P2CP) and 90-day P1-rated (or

“AA-rated”) commercial paper (P1CP).

• The spread between 90-day P2CP rate and the average money-market mutual fund (MMF)

rate.

The MMF rate data are from Xiao (2020) at a monthly frequency. The MMF data are

only available from 1987. Additionally, while the P2CP-P1CP spread is always positive, the

P2CP-MMF rate has three negative observations in our sample, likely due to measurement

error. We set these observations to zero so that the liquidity premium index in (27) is

well-defined.
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We measure the deposit spread in a similar manner as in earlier sections. We first regress

the P2CP-deposit spread (the spread between 90-day P2CP rate and the average deposit

rate) on the federal funds rate using the data we have on the deposit spread post-1987. We

use the regression result to project the deposit spread for the entire period, including the

pre-1987 period. The projection approach also guarantees that the deposit spread remains

positive. 11

As a first step, we estimate the “inner CES aggregator” between Treasuries and non-bank

deposits, as specified by equation (32). As in other specifications, we instrument the quantity

ratio moment by total Treasury/GDP and (total Treasury/GDP)2 to alleviate endogeneity

concerns.

Results are reported in Table 9. We see that the estimated values of η in different

specifications are quite close to one, i.e., perfect substitutes. The value of η = 1 for the

MMF regression arises because we restrict that η ≤ 1 in our estimation. Otherwise, the

results do not depend on the choice of spread or instruments.

Table 9: GMM Estimation of the Substitution Between Non-bank Deposits and Treasuries

Measurement of non-bank liquidity premium

P2CP−P1CP P2CP−MMF P2CP−P1CP P2CP−MMF

(1) (2) (3) (4)

η 0.873 1.000 0.911 1.000
(0.151) (0.178) (0.159) (0.141)

βµ 0.120 0.041 0.113 0.042
(0.016) (0.002) (0.015) (0.002)

Variation Explained 51.4% 70.7% 50.8% 70.7%
Total Treasury IV? No No Yes Yes
Observations 462 306 462 306

Notes: This table shows the GMM estimations of parameters η and βµ. The GMM speci-
fications is in (32). We restrict η ≤ 1 in the estimation so the results will be economically
meaningful. In column (3) and (4), we instrument quantity ratio by total Treasury/GDP
and (total Treasury/GDP)2. HAC standard errors with 12 lags are reported in parenthe-
ses.

Next, we turn to the full model, described by the four parameters, η, ρ, βµ, and βλ,

estimated from the moment conditions in (32) and (33). Because the results may be sensitive

11Figure 10 of the Appendix plots the deposit volumes, along with the volume of MMF outstanding, as
well as the measures of the liquidity premia based on P2CP.
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to the initial conditions for the GMM minimization algorithm, we use all permutations of

point estimates from Table 9 and Table 6 (in total there are 4×4=16 different combinations)

as initial values for the GMM algorithm and select the result that minimizes the GMM

objective function. The estimation results are in Table 10. We find a value of η near one

across all the specifications, consistent with the results in Table 9. The standard errors of

estimated η are tight for all of the specifications. The estimated values of ρ are a little

lower than the 0.6 of earlier estimates, but this difference is not statistically significant.

Additionally, the standard errors are much wider in the versions where we use total Treasury

as instruments. Note that our estimation of the more complicated model of this section is

based on a shorter sample than earlier results. The table also reports goodness of fit measures

for both of the liquidity premia explained by the model, the Treasury liquidity premium and

the liquidity premium on the bundled bond (equation(31)).

Table 10: GMM Estimation of the Nested Model

Measurement of non-bank liquidity premium

P2CP−P1CP P2CP−MMF P2CP−P1CP P2CP−MMF

(1) (2) (3) (4)

ρ 0.628 0.566 0.632 0.655
(0.173) (0.237) (0.548) (0.466)

βλ 0.024 0.042 0.011 0.043
(0.002) (0.003) (0.002) (0.003)

η 0.764 0.997 0.873 0.997
(0.105) (0.081) (0.090) (0.056)

βµ 0.094 0.039 0.120 0.035
(0.007) (0.001) (0.006) (0.001)

Total Treasury IVs? No No Yes Yes
R2 for Tsy Liq Prem 0.66 0.53 0.64 0.53
R2 for Q’ Liq Prem 0.47 0.29 0.5 0.28
Observations 486 306 486 306

Notes: This table shows the GMM estimations of parameters ρ, βλ, η, and βµ. The
GMM specifications are in (32) and (33). In column 3 and 4, we instrument quantity
ratios (Tsyt/non-bankt and Bt/Dt) by total Treasury/GDP and (total Treasury/GDP)2.
We report the R2 fit of both the Treasury liquidity premium (equation (29)) and the
composite bonds premium (equation (31)). HAC standard errors with 12 lags are reported
in parentheses.
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Fig. 6. Time Series of Estimated Relative Liquidity

Next, we use the estimated coefficients from column (1) of Table 10, βλ and βµ, and plot

the implied λt and µt series in Figure 6:

λt =
βλVIXt

1 + βλVIXt

µt =
βµVIXt

1 + βµVIXt

.

Here λt measures the relative liquidity per-unit-of-asset of composite bonds and deposits.

Similarly, µt measures the relative liquidity Treasures and non-bank deposits. From Figure

6, we see that most of the time λt < 0.5 with an average value of 0.35, so the composite bonds

offer less liquidity compared to deposits. On the other hand, µt > 0.5 in the majority of

periods with an average value of 0.56, indicating that Treasuries offer more liquidity services

compared to non-bank deposits.

3.2. A new liquidity aggregate

There is a large literature estimating money-demand equations, in which a measure

of money (typically M1/P or M2/P) is regressed against the opportunity cost of money

(typically the nominal commercial paper rate) and GDP. The literature aims to measure

the interest-rate and income elasticity of money demand. See Goldfeld and Sichel (1990)’s

chapter in the Handbook of Monetary Economics. The literature is interested in these

elasticity estimates because they are needed to answer questions such as, what is the optimal
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growth rate of money, and, what is the welfare cost of inflation (e.g., see Lucas (2001)).

Many authors have commented on the instability of traditional money demand functions (see

Goldfeld and Sichel (1990), Teles and Zhou (2005), Lucas and Nicolini (2015)). The finding in

the literature is that while there is a stable relation between real money demand, the nominal

interest rate, and real income, in the period before 1980, this relation breaks down post-1980.

The most prominent puzzle in the literature is the “missing money” of the post-1980 period,

when interest rates fell and money balances rose, but not as strongly as earlier estimates

would have predicted. Resolutions of this puzzle have centered on recognizing that, prompted

by the banking deregulation of the 1980s, a broader set of assets than checkable deposits

offer monetary services. Teles and Zhou (2005) and Lucas and Nicolini (2015) expand the

definition of money to include money market deposit accounts and measure the interest rate

spread on these accounts as the opportunity cost of money. They show that growth in these

accounts are the “missing-money” from other estimates, and including these accounts leads

to a stable money-demand curve. Krishnamurthy and Vissing-jorgensen (2013) note that

accounting for the impact of Treasury supply on bank money may help with the missing

money puzzle.

In this section, we construct a new broad liquidity aggregate based on our analysis and

show that the demand for this aggregate is stable despite financial innovation. Our approach

is similar to Teles and Zhou (2005) and Lucas and Nicolini (2015) in that we broaden the

monetary aggregate. We are different in that we consider Treasury bonds along with the

KVJ measure of non-bank deposits as the new components of the monetary aggregate. We

also drop currency from the aggregate, in keeping with our focus on traded financial assets.

The appendix reports results where we include currency. Finally, and central to the results

of this paper, we allow that these assets may be imperfect substitutes.

We specialize the model to a functional form that is common in the monetary economics

literature:

u(Ct, Qt) =
C1−γC
t

1− γC
+
Q

1−γQ
t

1− γQ
(34)

Then the FOC for the deposit spread (for ρ 6= 0) gives,

log

(
it − idt
1 + it

)
= γC log (Ct)−(1−ρ) log

(
Dt

Pt

)
+

1

ρ
(1−ρ−ργQ) log (Qt)+log (1− λt) . (35)

We rewrite this equation to describe the demand over the liquidity aggregate, Qt:

1

ρ
(γQ+ρ−1) log (Qt) = − log

(
it − idt
1 + it

)
+γC log (Ct)−(1−ρ) log

(
Dt

Pt

)
+log (1− λt) . (36)
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We note the typical case studied in the money-demand literature sets Qt = mt (real value

of money) and omits ρ, in which case equation (35) is:

γQ log (mt) = − log

(
it − idt
1 + it

)
+ γC log (Ct) (37)

The literature typically runs regressions of log(mt/real GDPt) on log((it − idt )/(1 + it)) and

log(real GDPt) in order to estimate γQ and γC .

We construct two monetary aggregates, Qt and Q′t. The first aggregate is from our

baseline, defining Qt as in (6), with Bt equal to net Treasury supply, Dt is the deposit

measure, and ρ set to be 0.60, which is the common value across our different specifications.

We construct the aggregate with λt varying over time with VIX. The second aggregate is

based on the nested specification, defining Q′t as in (23) and using the average value of ρ and

η from our nested estimations in Table 10 to construct Q′t. We again consider time-varying

weights for µ and λ.12

The first and second columns of Table 11 present the instability finding in the literature.

We regress the log of real money balances to GDP, where money is measured as M1 (currency

and checking deposits), on the log of the deposit spread and the log of real GDP. The

estimate for the interest elasticity in the first row changes considerably from the pre-1980

sample to the post-1980 sample, in line with the instability finding in the literature. The

first panel of Figure 7 presents a scatter plot annual averages of log(mt/real GDPt) against

the log(spreadt). As the spread falls in the post-1980 sample, we would have expected based

on the pre-1980 results that money balances would have risen. But they do not, resulting in

the “missing money” puzzle.

Our results illustrated in Panels (b) and (c) of Figure 7 indicate that the expanded liquid-

ity aggregates, Q and Q′, help resolve the missing money puzzle. Columns (3) through (6)

of Table 11 present these results in regression form. We note that the interest rate elasticity

of money demand is now quite similar across the two sub-samples for both liquidity aggre-

gates. From columns (3) and (4), we see that the income elasticity however still changes

across the sub-samples, going from roughly unit elasticity (note that our LHS in the regres-

sion is Qt/real GDPt so the income elasticity is one plus the coefficient on log(real GDPt))

in the pre-1980 sample to 0.64 in the post-1980 sample.

In the appendix, we also report the impact of including currency in our new monetary

aggregates. We include currency in Dt and otherwise aggregate non-bank debt and Treasury

bonds following the same procedure. The results are consistent with those we report in this

12The Appendix reports these results where we construct Qt and Q′t based on holding µ and λ constant
over time.
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Table 11: Money Demand Regressions

Dependent variable:

log(mt/real GDPt) log(Qt/real GDPt) log(Q′t/real GDPt)

pre 1980 post 1980 pre 1980 post 1980 pre 1980 post 1980
(1) (2) (3) (4) (5) (6)

log(deposit spreadt
1+it

) −0.317 −0.087 −0.094 −0.117 −0.065 −0.099

(0.012) (0.006) (0.008) (0.004) (0.007) (0.003)

log(real GDPt) −0.172 −0.512 −0.010 −0.359 −0.012 −0.349
(0.016) (0.030) (0.011) (0.022) (0.011) (0.018)

log(VIXt) 0.015 −0.077 0.030 −0.043
(0.013) (0.016) (0.012) (0.013)

Constant 0.033 2.751 −0.691 2.679 −0.742 2.479
(0.131) (0.278) (0.115) (0.204) (0.109) (0.167)

Observations 552 444 552 444 552 420
R2 0.894 0.409 0.498 0.673 0.364 0.677

Notes: This table presents the money demand regressions with different definitions of
money, where mt is the real quantity of money including currency and checking deposits,
Qt is the real value of liquidity bundle as in equation (6), and Q′t is the real value
of liquidity bundle as in equation (23). Newey-West standard errors with 12 lags are
reported in parentheses.
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Fig. 7. Quantity of Liquidity and the Opportunity Cost of Holding Liquidity. The y-axis is
log(deposit spreadt/(1 + FFRt)) across all three panels. Data are annual averages, with the
years marked on the figure.

section: the demand for our new broad aggregate is stable compared to that of the demand

for M1. See Table 25 of the appendix.

4. Comparisons of Estimation Methods

Our estimation implies that ρ is around 0.6. Applying the Wald test to the null hypoth-

esis,

H0 : ρ = 1, (38)

based on the estimates from column (1) of Table 6, we find a Wald statistic W = 13.7,

with a p-value of 2×10−4. The model strongly rejects the null hypothesis that deposits

and Treasuries are perfect substitutes, contradicting the conclusion in Nagel (2016) that

Treasuries and bank deposits are close to perfect substitutes. Testing the hypothesis H0 :

ρ = 0 yields an even smaller p-value, indicating that we can also reject that ρ is zero. In

what follows, we further explore the statistical power of our approach to estimating ρ.

4.1. Probability of False Positive

We first note that our estimate of ρ is robust to nonlinear least squares that directly

minimizes the sum of squared model prediction errors as well as GMM with different moment

conditions. Refer to Appendix C for details.

In this section, we ask, suppose that the true model has ρ = 1, what is the probability
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that the GMM estimation wrongly finds ρ̂ ≤ 0.64 (the average value of ρ in Table 6)? For

this purpose, we first estimate the model

lpt = βλstV IXt + ε̃t (39)

Next, we apply a stationary block bootstrap on ε̃t 5,000 times to generate 5,000 different

time series of the liquidity premium. With the GMM estimation and an underlying model of

(12), we generate 5,000 different estimates of ρ. Then we calculate the probability of finding

ρ̂:

P (ρ̂ ≤ 0.64|ρ = 1) =
# of estimations smaller than 0.64

# of estimations
= 0.6% (40)

We conclude that it is unlikely that the true ρ equals to 1 but our estimates reveal a ρ less

than 0.64.

4.2. Sources of Differences

There are two main differences between our approach and Nagel (2016). First, we use

log(Net Treasuries/deposits) instead of log(Total Treasuries/GDP). As noted, the former

variable more closely aligns with the theory, and as we have shown, using this variable

sharpens our results. The second difference has to do with the interaction effect we have

discussed. Theoretically, the nominal interest rate and Treasury supply interact in driving

the liquidity premium, as illustrated by equation (12), and this interaction term is missed in

Nagel (2016)’s linearized model.

To understand how these differences contribute to the different estimate in this paper,

we compare three estimation methods:

1. Linear regression using bond/GDP ratio: liquidity premium∼ FFR + log(Total Debt/GDP)

+ VIX. This regression is the same as Nagel (2016).

2. Linear regression using bond/deposit ratio: liquidity premium∼ FFR + log(Net Debt/Deposit)

+ VIX.

3. GMM: direct estimation of equation (12) using GMM with moment conditions (21).

We compare these estimation methods in two dimensions.

Significance of the Quantity Variable

Using the average of the estimated values across columns in Table 6 and equation (12),

we bootstrap the residuals and then summarize the statistical properties of the different
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estimation methods.

There are different ways to implement the bootstrap. A simple bootstrap with replace-

ment works for i.i.d. residuals. However, in the data, the residuals of the liquidity premium

have a strong time-series correlation that is well represented by a stationary autoregressive

process. In the statistics literature, the method designed for this case is stationary bootstrap-

ping (Politis and Romano, 1994), which preserves stationarity and time series correlation,

based on the assumption that the time series is stationary and weakly dependent.

We repeat the stationary bootstrap 5,000 times,13 each with a different random seed. For

each bootstrap, the three methods are used to estimate the impact of the supply variable,

which is the coefficient of log(Net Debt/GDP) in the first approach, the coefficient of log(Net

Debt/Deposits) in the second approach, and ρ− 1 in the third approach.

Figure 8 presents the results. It is apparent that method 3 implies higher confidence in

ρ < 1 than method 2 and method 1. The average t-stat is about −1.0 using the first linear

regression method, −1.9 using the second linear regression method, −3.8 using GMM (−3.1

using GMM with IV). Furthermore, with method 1, the probability of finding that ρ is above

1 is 13.2%, while such a probability drops to 1.7% for method 2 and 0.02% for method 3.

Thus, we are more likely to wrongly conclude that bonds and deposits are almost perfect

substitutes based on the supply factor’s insignificance using the first linear regression method,

even if the underlying truth is far from perfect substitutes.
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Fig. 8. Comparing t-stats under Three Different Methods. This figure shows the
density of t-stats on the estimated coefficient of bond supply, which is the coefficient of
log(Net Debt/GDP) in method 1, the coefficient of log(Net Debt/Deposits) in method 2,
and ρ − 1 in method 3. Block-bootstrap residuals are used for simulation analysis and we
assume the underlying model has ρ equal to the average estimation results in Table 6.

13Results are similar if we use more than 5,000 rounds.
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Implied Substitution Effect

Next, we compare the implied ρ̂ in three different methods. In the first method, suppose

the coefficient on log(Net Debt/GDP) is β1. Then

ρ̂(1) =
∂(log(lp))

∂ log(Net Debt/GDP)
+ 1 =

∂(lp)

∂ log(Net Debt/GDP)

1

lp
+ 1 = β1

1

lp
+ 1 (41)

is an approximation for ρ. In the second method, suppose the coefficient on log(Net Debt/Deposits)

is β2, then

ρ̂(2) =
∂(log(lp))

∂ log(Net Debt/Deposits)
+ 1 =

∂(lp)

∂ log(Net Debt/Deposits)

1

lp
+ 1 = β2

1

lp
+ 1 (42)

is an approximation for ρ. In the third method, we directly estimate ρ̂(3) = ρ̂. Then we

compare ρ̂(1), ρ̂(2), and ρ̂(3) in Figure 9. The results indicate that the GMM estimated

results have the least bias and result in the least estimation error. Linear regressions with

Treasuries/deposits yield ρ̂ with a slight bias relative to the true value and result in a larger

estimation error. Finally, the linear regression method using Treasuries/GDP as in Nagel

(2016) yields biased results and has the largest error.
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Fig. 9. Comparing Estimated ρ under Three Different Methods. This figure shows
the density of the implied ρ under three different methods. Block-bootstrap residuals are
used for simulation analysis and we assume the underlying model has ρ equal to the average
estimation results in Table 6
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5. Conclusions

Bank deposits, non-bank short-term safe debt, and Treasury bonds all provide liquidity

services to investors. They provide different types of these services, as evidenced by our

results that bank deposits and Treasury bonds are imperfect substitutes. They also provide

different amounts of liquidity services per-unit-of-asset, as evidenced by our estimates of µ

and λ, with Treasury bonds notably providing a larger amount of liquidity services than

non-bank debt. We view our analysis as furthering a research area which has been active

over the last decade of broadening the definition of money to grapple with the complexities

of a modern financial system. This research is directly relevant for understanding many

monetary and banking issues; some prominent examples include, understanding how quan-

titative easing works and mapping out the potential benefits of a central bank-issued digital

currency.
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Appendix A. Model Derivations

In this section, we derive the baseline first-order conditions of the representative investor

in (10) and (11). Then we show how to incorporate other types of assets.

A.1. Baseline Results

The Lagrangian of the investor optimization problem is

E[
∞∑
t=1

βt

(
u(Ct, Qt) + λt (−PtCt −Dt −Bt − At + · · ·)
+λt+1

(
Dt(1 + idt ) +Bt(1 + ibt) + At(1 + it) + · · ·

) )]. (A-1)

The first order condition on consumption is

∂u(Ct, Qt)

∂Ct
= λtPt. (A-2)

The first order condition on lending is

Et[λt+1](1 + it)− λt = 0. (A-3)

The first order condition on deposit holding is

∂u(Ct, Qt)

∂Qt

∂Qt

∂Dt

− λt + Et[λt+1](1 + idt ) = 0. (A-4)

The first order condition on bond holding is

∂u(Ct, Qt)

∂Qt

∂Qt

∂Bt

− λt + Et[λt+1](1 + ibt) = 0. (A-5)

Combining Equations (A-2), (A-3), and (A-4), we get

∂u(Ct, Qt)

∂Dt

=
∂u(Ct, Qt)

Ct

1

Pt

it − idt
1 + it

. (A-6)

Similarly, from (A-2), (A-3), and (A-5), we have

∂u(Ct, Qt)

∂Bt

=
∂u(Ct, Qt)

Ct

1

Pt

it − ibt
1 + it

. (A-7)
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When ρ 6= 0, by expanding the definition of Qt, we have

∂u(Ct, Qt)

∂Dt

=
∂u(Ct, Qt)

∂Qt

Q1−ρ
t (1− λt)(

Dt

Pt
)ρ−1

1

Pt
. (A-8)

∂u(Ct, Qt)

∂Bt

=
∂u(Ct, Qt)

∂Qt

Q1−ρ
t λt(

Bt

Pt
)ρ−1

1

Pt
. (A-9)

When ρ = 0,

Qt = (
Dt

Pt
)1−λt(

Bt

Pt
)λt , (A-10)

and therefore the derivatives are

∂u(Ct, Qt)

∂Dt

=
∂u(Ct, Qt)

∂Qt

(1− λt)
Qt

(Dt/Pt)

1

Pt
, (A-11)

∂u(Ct, Qt)

∂Bt

=
∂u(Ct, Qt)

∂Qt

λt
Qt

(Bt/Pt)

1

Pt
. (A-12)

Combining (A-8) and (A-9) with (A-11) and (A-12), we have

∂u(Ct, Qt)

∂Qt

Q1−ρ
t (1− λt)(

Dt

Pt
)ρ−1 =

∂u(Ct, Qt)

∂Ct

it − idt
1 + it

, (A-13)

∂u(Ct, Qt)

∂Qt

Q1−ρ
t λt(

Bt

Pt
)ρ−1 =

∂u(Ct, Qt)

∂Ct

it − ibt
1 + it

, (A-14)

for all ρ ∈ R.

A.2. Allowing for Other Assets in Liquidity

The first order conditions may remain the same when we introduce other assets into

the CES aggregator of liquidity. For example, suppose we include cash Mt that change the

aggregator Qt into

Qt =

(
(1− λt)(

Dt

Pt
)
ρ

+ λt(
Bt

Pt
)
ρ

+ ξt(
Mt

Pt
)
ρχ) 1

ρ

. (A-15)

Then the derivatives of Qt over Dt and Bt are still going to the the same as (A-8) (A-9) for

ρ 6= 0, and (A-11) (A-12) for ρ = 0. The opportunity costs for holding bonds and deposits

are still the same. Therefore, the first order conditions are still the same as (A-13) and

(A-14).

In general, we can add more liquid assets into the liquidity substitution bundle without

affecting the estimation of the elasticity of substitution between Treasuries and bank deposits.
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Appendix B. Data Construction

B.1. Quantities

• Checking deposits: all checking accounts in commercial banks. Data series downloaded

from FRED, with identifier “TCDSL”, from 1959-2016. Before 1959, we obtain data from

the FDIC historical bank dataset, https://banks.data.fdic.gov/explore/historical,

by selecting “Choose a report – Commercial Banks – Financial – Deposits – Domestic De-

mand”.

• Savings deposits: all saving accounts in commercial banks, including money market de-

posit accounts. Data series downloaded from FRED, with identifier “SAVINGSL”, from

1959-2016. Before 1959, we obtain data from the FDIC historical bank dataset with

similar procedures as the checking deposits (select “Deposits – Domestic Savings”).

• Time deposits: all time deposits at banks and thrifts with balances less than $100,000.

Data series downloaded from FRED, with identifier “STDSL”, from 1959-2016. Before

1959, we obtain data from the FDIC historical bank dataset with similar procedures as

the checking deposits (select “Deposits – Domestic Time”).

• Total debt (book value): Treasury debt held by the public (FRED identifier “FYGFD-

PUN”) from 1970 to 2016. Before 1970, we use the total debt measure in Nagel (2016),

which originally comes from Bohn (2008). Both pre- and post- 1970 measures exclude

Social Security Trust Funds holdings.

• Net Tsy (market value): We first calculate the book value as “Total debt’ minus bank

holding and Federal Reserve holdings of Treasuries, which leads to a measure of non-bank

private sector holding of Treasuries. Then we translate the book value into market values

using the market-to-book ratio of all marketable Treasury securities (Data on market and

book values are provided by Federal Reserve Bank of Dallas, https://www.dallasfed.

org/research/econdata/govdebt#tab3.).

• Nominal and real GDP: After 1947, quarterly data are downloaded from FRED with

identifiers “GDP” and “GDPC1”. For 1929-1946, yearly data are downloaded from FRED

with identifiers “GDPA” and “GDPCA”. Then we concatenate the two data series to get

nominal and real GDP from 1929 to 2016.

• M1: a monetary aggregate that includes currency in circulation and checking deposits.

Currency in circulation is from FRED with the identifier “CURRCIR”, available from

1917 to 2021 at a monthly frequency.
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• KVJ deposits: the financial sector liability as measured by Krishnamurthy and Vissing-

Jorgensen (2012). Krishnamurthy and Vissing-Jorgensen (2015) construct the “net short-

term debt” of the financial sector as the sum across each firm in the financial sector (banks

and non-bank) of:

short-term debt liabilities− (short-term debt assets + government supplied liquid assets).

We use the net short-term debt measure and add back the government-supplied liquid

assets, which then corresponds to the short-term debt liabilities of the financial sector

held by the nonfinancial sector.

B.2. Rates

• Federal funds rate (FFR): Monthly effective FFR in percentage, with FRED identifier

“FEDFUNDS”, from 1954 to 2016. From 1920 to 1954, monthly data is from Nagel

(2016).

• Liquidity premium: after 1991, liquidity premium is measured as the yield spread between

three-month Repo (collateralized by Treasuries) and three-month Treasuries. Since the

original repo series in Bloomberg discontinued in 2016, the liquidity premium series ends

in 2016. From 1920 to 1991, liquidity premium is measured as the yield spread between

three-month banker acceptance and three-month Treasury bills.

• 3 month T-bill rate: secondary-market rate for 3-month T-bill downloaded from FRED,

with the identifier “TB3MS”. Data cover 1934 to 2021.

• Deposit rates: we obtain monthly data on commercial bank checking, saving, and small-

time interest expenses from bank call reports covering 1986 to 2013. Checking deposit

rates are calculated as the commercial bank checking interest expense over total checking

volume. Saving and small-time deposit rates are defined in a similar way.

• P1CP: 90-day P1-rated (equivalent to AA-rated) commercial paper rates obtained from

FRED. The data have two FRED identifiers: the first one is from 1971 to 1997 with

the identifier “WCP3M”, and the second one is from 1997 to 2021 with the identifier

“RIFSPPNAAD90NB”.

• P2CP–P1CP spread: P2CP data are directly from FRED for the post-1998 period, with

the identifier “RIFSPPNA2P2D90NB”. Before 1998, the data are from researchers at the

Federal Reserve Board.
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• Money market funds rate: we obtain the aggregate money-market rate from Xiao (2020)

for the period 1987–2012. The original data in that paper are from iMoneyNet and cover

almost all MMFs after 1987.

B.3. Aggregation Among Saving and Checking Deposits

The money aggregation literature (Barnett, 1980; Spindt, 1985; Goldfeld and Sichel, 1990)

considers how to aggregate different forms of money. Following this literature, we consider

a CES aggregate over saving and checking:

dt = 2(δ(dchecking,t)
κ + (1− δ)(dsaving,t)κ)

1
κ , (B-1)

where the multiplier 2 is to make sure that the aggregate quantity does not shrink to a 1/2

mechanically due to definition. For example, when δ = 1/2 and components are perfectly

substitutable with κ = 1, we expect dt = dchecking,t + dsaving,t, instead of dt = 0.5dchecking,t +

0.5dsaving,t.

The methodology to estimate relationship (B-1) is the same as estimating the substitution

between money and deposits. By taking first order conditions on both checking and saving

deposits, and divide both sides, we get

it − ichecking,t
it − isaving,t

=
δ

1− δ

(
dchecking,t
dsaving,t

)κ−1
. (B-2)

Using the same GMM method as we have used, we find κ = 1, and δ = 2/3, and the model

explains about 84% variation in the checking deposit spread. It is mainly for the internal

coherence of the methodology to estimate the elasticity of substitution between checking

and savings deposits. A simple aggregation with κ = 1 and δ = 1/2, which is used in the

definition of different money aggregates, result in a similar level of substitutability between

treasuries and “money”.

We estimate the substitution between saving and checking deposits using equation

it − ichecking,t
it − isaving,t

=
δ

1− δ

(
dchecking,t
dsaving,t

)κ−1
. (B-3)

In the data, we find that the checking deposit spread is well approximated by a constant

multiplying the saving deposit spread, which implies that the left-hand-side of the above

equation should be a constant, although the ratio of checking and saving is changing over

time. Thus a good estimation if κ = 1.

If we use GMM to estimate the above model, results are quite close to κ = 1, as shown
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in Table 12. The moment conditions are

E[εt ·


dchecking,t
dsaving,t

it

1

] = 0, (B-4)

with

εt = (it − ichecking,t)−
δ

1− δ

(
dchecking,t
dsaving,t

)κ−1
(it − isaving,t). (B-5)

We will pick the economically meaningful and round value κ = 1, and round value

δ/(1−δ) = 2, which implies δ = 2/3. Thus we are confident to use the following aggregation:

dρt = δd1,t + (1− δ)d2,t, (B-6)

and the aggregate dρt , with the weighted spread as

s = δs1,t + (1− δ)s2,t. (B-7)

Table 12: GMM Estimation for the Substitution Between Saving and Checking Deposits

Parameters for estimation Estimated values

κ 1.000∗∗∗

(0.387)

δ/(1− δ) 2.053∗∗∗

(0.487)

Observations 372
R2 of explaining checking spread 93%

Notes: This table shows the estimated parameters for the substitution be-
tween saving and checking deposits, using GMM with moment conditions
listed in (B-4). Newey West standard errors with 12 lags are reported in
parentheses. ∗ p < 0.1; ∗∗ p < 0.05; ∗∗∗ p < 0.01.
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Appendix C. Additional Results

This section provides additional results and robustness checks.

C.1. First-Stage Regressions

In Table 13, we report the first stage for the level regressions of Table 4. The F -statistic

for both first-stages is well above the standard threshold of 10.

Table 13: First Stage for Level Regressions in Table 4

Dependent variable:

log( Net Tsy
Deposits

) log( Net Tsy
KVJ Deposits

)

(1) (2)

log(Total Tsy
GDP

) 2.205 1.099
(1.283) (0.404)

Total Tsy
GDP

−2.761 −0.199
(2.372) (0.753)

Constant 2.597 0.161
(2.281) (0.699)

Observations 996 1,140
R2 0.519 0.864

In Table 14, we show the first stage for difference regressions in Table 5. We find that

the monthly dummies are strongly related to the changes in T-bill ratios, while the federal

funds futures IV (price difference in month t− 2 of federal funds futures for month t− 1 and

t) is strongly related to changes in FFR from t− 1 to t.

C.2. Alternative Measures of the Deposits Spread

In our main text, we use the projection of deposit spread on FFR throughout the whole

sample. In this subsection, we present our results with an alternative construction where we

use the raw deposit spread data whenever data are directly available and the projection on

FFR if not. Estimation results are shown in Table 15. We find that coefficients are broadly

similar, but the R2s are lower, indicating that the projection method throughout the sample

helps reduce the noise in the deposit spread measure.
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Table 14: First Stage for Difference Regressions in Table 5

Dependent variable:

∆ log(T-billt
GDPt

) ∆ log(T-billt−1

GDPt−1
) ∆ log( T-billt

Depositt
) ∆ log( T-billt−1

Depositt−1
) ∆FFRt

(1) (2) (3) (4) (5)

M1 0.035 0.006 0.025 0.017 −0.006
(0.012) (0.009) (0.013) (0.009) (0.035)

M2 0.028 0.041 0.018 0.041 0.036
(0.012) (0.010) (0.012) (0.010) (0.024)

M3 −0.063 0.033 −0.060 0.034 −0.005
(0.013) (0.008) (0.013) (0.008) (0.021)

M4 0.006 −0.057 −0.004 −0.044 −0.005
(0.010) (0.011) (0.010) (0.011) (0.025)

M5 −0.005 0.012 −0.015 0.012 0.007
(0.009) (0.008) (0.009) (0.008) (0.025)

M6 0.018 0.001 0.018 0.001 −0.039
(0.010) (0.006) (0.011) (0.006) (0.026)

M7 0.036 0.023 0.024 0.034 −0.025
(0.012) (0.008) (0.013) (0.008) (0.022)

M8 −0.008 0.041 −0.019 0.040 −0.010
(0.011) (0.010) (0.011) (0.010) (0.029)

M9 0.030 −0.003 0.031 −0.003 −0.083
(0.012) (0.011) (0.012) (0.011) (0.038)

M10 0.043 0.035 0.034 0.047 −0.034
(0.012) (0.012) (0.012) (0.011) (0.033)

M11 −0.005 0.049 −0.016 0.050 −0.086
(0.009) (0.010) (0.009) (0.010) (0.031)

FFfutures IV −0.021 −0.018 −0.009 −0.003 1.146
(0.015) (0.013) (0.016) (0.012) (0.143)

Constant −0.009 −0.014 −0.003 −0.019 −0.018
(0.008) (0.005) (0.008) (0.005) (0.023)

Observations 335 336 335 336 335
R2 0.352 0.352 0.330 0.329 0.403
F Statistic 14.5 14.6 13.2 13.2 18.1

50



Table 15: GMM Estimations with Concatenated Deposit Spread

Measurement of B/D

Net Tsy
Deposits

Net Tsy
KVJ Deposits

Net Tsy
Deposits

Net Tsy
KVJ Deposits

(1) (2) (3) (4)

ρ 0.589 0.690 0.535 0.467
(0.130) (0.247) (0.159) (0.207)

βλ 0.011 0.011 0.011 0.008
(0.001) (0.003) (0.002) (0.002)

p-value of J-test 0.287 0.170 0.680 0.216
Total Treasury IV? No No Yes Yes
Variations explained 66.2% 62.3% 66.6% 64.4%
Observations 996 972 996 972

Notes: This table shows the two-step GMM estimations of parameters ρ and βλ.
Model specifications is in (21) and (C-1), but we instrument quantity ratio by total
Treasury/GDP and (total Treasury/GDP)2. Deposit spread is the actual average
deposit spread as defined in (14) whenever data are available, and the projection of
deposit spread on FFR otherwise. Other variable definitions are provided in Table
1 and 3. Newey-West standard errors with 12 lags are reported in parentheses.
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C.3. Alternative Measures of the Treasury Liquidity Premium

In this section, we redo the main estimation with alternative liquidity premium measures.

We only consider alternative liquidity premium measures with at least 30 years of data to

ensure statistical confidence. This leaves us the following choices:

1. CD/T-bill 3M spread, which is the yield spread between 3-month certificates of deposit

and 3-month T-bill.

2. Note/bill spread, the yield spread between 3-month Treasury notes and bills.

3. GSW/T-bill 3M spread, which is the yield spread between the implied 3-month Treasury

yield from the widely-used fitting algorithm in Gürkaynak, Sack and Wright (2007) and

3-month T-bill rate. We follow the same construction as Lenel, Piazzesi and Schneider

(2019).

All of the above data are obtained from Nagel (2016). We report the GMM estimation

results in Table 16. As shown in the first column, when we use CD/T-bill 3M as the liquidity

premium measure, the estimate of ρ is 0.533. When we use note/bill spread (second column),

the estimated ρ is 1.056 although the estimation fit is very poor, reflected in the large

standard error and low R2. The fit is also poor when using the on/off spread in column

(3). In the time series, both the note/T-bill spread and on/off spread are more volatile and

likely have other non-money demand factors driving their variation. For example, the on/off

spread is negative in around 25% of the sample and the note/T-bill spread is negative in

around 22% of the sample. Finally, the estimate using the GSW/T-bill spread is in the range

of our baseline estimates, although the estimation fit is relatively poor.

C.4. Alternative Measures of λt

We next consider other functions and data to proxy for VIX. A priori, there is no reason

that the VIX should drive λ in the functional form prescribed by (22). We instead consider

a functional form:
λt

1− λt
= βλ(proxyt)

κ (C-1)

where “proxy” here denotes either the VIX index, the BAA–AAA credit spread, which re-

flects credit risk premium in the corporate sector, or intermediary market leverage, which

reflects bank vulnerability and has been widely used in the intermediary asset pricing litera-

ture as a factor of the pricing kernel. We construct bank market leverage as 1/bank capital

ratio using data from He, Kelly and Manela (2017). These latter two variables capture the
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Table 16: GMM Estimation with Alternative Measures of `t

Treasury Liquidity Premium Measures

CD-Tbill 3M Note-Bill Spread GSW-Tbill 3M

(1) (2) (3)

ρ 0.533 1.056 0.727
(0.090) (0.620) (0.245)

βλ 0.015 0.002 0.006
(0.001) (0.0004) (0.001)

p-value of J-test 0.712 0.059 0.543
Variations explained 60.1% 7% 13.9%

Observations 631 432 667

Notes: This table shows the two-step GMM estimations of parameters ρ and βλ.
Model specifications is in (21) and (C-1), but we instrument quantity ratio by total
Treasury/GDP and (total Treasury/GDP)2. CD-Tsy 3M and Note-Bill spread are
obtained from Nagel (2016), where “CD” denotes certificate of deposits. GSW-Tsy
3M is the spread between implied 3-month Treasury yield from the fitting algorithm
in Gürkaynak, Sack and Wright (2007) and 3-month Tbill rate. HAC standard errors
with 12 lags are reported in parentheses.
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Table 17: GMM Estimation with Alternative Measures of λt

Proxy for λt

VIX Credit Spread Bank Leverage

Measurement of B/D Net Tsy
Deposits

Net Tsy
KVJ Deposits

Net Tsy
Deposits

Net Tsy
KVJ Deposits

Net Tsy
Deposits

Net Tsy
KVJ Deposits

(1) (2) (3) (4) (5) (6)

ρ 0.692 0.635 0.669 0.606 0.612 0.604
(0.171) (0.191) (0.230) (0.260) (0.222) (0.252)

βλ 0.015 0.014 0.218 0.174 0.105 0.084
(0.008) (0.008) (0.041) (0.055) (0.039) (0.033)

κ 0.930 0.874 0.193 0.160 0.233 0.243
(0.160) (0.167) (0.129) (0.144) (0.129) (0.140)

p-value of J-test 0.891 0.833 0.838 0.784 0.633 0.470
Variations explained 69.8% 69.1% 63% 62.9% 64.3% 63.8%
Observations 996 972 996 972 996 972

Notes: This table shows the two-step GMM estimations of parameters ρ, βλ, and κ. Model
specifications is in (21) and (C-1), but we instrument quantity ratio by total Treasury/GDP
and (total Treasury/GDP)2. Credit spread is the BAA–AAA corporate bond credit spread by
Moody. Bank leverage is the inverse of intermediary capital ratio from He, Kelly and Manela
(2017), where we extend the measure to before 1970s by projecting it to the daily returns of
49 industrial portfolios from Kenneth French’s website. The sample period is 1934–2016 for
column 1,3,5, and 1934–2014 for column 2,4,6. Newey-West standard errors with 12 lags are
reported in parentheses.

idea that the “safety” of deposits may vary over time and influence the relative moneyness

of deposits and Treasuries.

Estimation results are presented in Table 17. As shown in column (1), the estimated

κ ≈ 1 using VIX, which supports our baseline specification where we implicitly impose

κ = 1. More importantly, across all of the specifications, the estimated ρ is around 0.6, and

the regression R2 are high and also quite similar across these alternative proxies, indicating

that all of these proxies work in a similar fashion.

C.5. Robustness of Estimation Method

In the main text, we have used two-step GMM to estimate an over-identified system in

(21). As robustness checks, we will use different combinations of moment conditions. We
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list the individual moment conditions as follows:

E[εt] = 0. (C-2)

E[εt · st] = 0, (C-3)

E[εt · VIXt] = 0, (C-4)

E[εt · (Bt/Dt)] = 0, (C-5)

For robustness checks, we will use the same GMM methods, but with subsets of the four

moment conditions (C-2), (C-3), (C-4), and (C-5). Another method is the generalized least

square that finds the best fit of the model for the data, with the objective

min
ρ,βλ

1

T

T∑
t=1

ε2t (C-6)

As a result, the first order conditions include

1

T

T∑
t=1

εt · st · VIXt(
Bt

Dt

)
ρ−1

= 0 (C-7)

1

T

T∑
t=1

εt · st · VIXt(
Bt

Dt

)
ρ−1

log(
Bt

Dt

) = 0 (C-8)

Results are shown in Table 18. We find that the estimated values are, in general, quite

similar to different combinations of the moment conditions in (C-2) to (C-5). The NLS

estimations are also close to the GMM estimations in Table 6.

C.6. Effect of VIX

In Table 19, we illustrate our log regression results without VIX. In columns 1-3, we use

the full sample, while in columns 4-6, we exclude the WWII period (1942-1951). In all cases,

the coefficients on the log quantity variable (which maps to ρ − 1 in the model) imply a ρ

significantly different from 1, ranging from 0.4 to 0.76.

In Table 20, we show how our baseline results in Table 6 change when we remove VIX

variations from the model. Across all scenarios, we find that estimations of ρ remain very

similar to Table 6, although the standard errors are all larger than the corresponding columns

in Table 6.

Based on the results in Table 19 and Table 20, we conclude that VIX helps with reducing
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Table 18: Robustness Checks with Different Moment Conditions and Estimation Methods

Estimation Methods

GMM1 GMM2 GMM3 GMM4 GMM5 GMM6 GMM7 NLS

ρ 0.74 0.24 0.61 0.71 0.60 0.61 0.59 0.59
(0.28) (1.91) (0.10) (0.26) (0.11) (0.10) (0.11) (0.11)

βλ 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
(0.003) (0.01) (0.001) (0.003) (0.001) (0.001) (0.001) (0.001)

Variation explained 0.68 0.68 0.7 0.68 0.7 0.7 0.7 0.7
p-value NA NA NA 0.65 0.36 0.76 0.62 NA
Observations 996 996 996 996 996 996 996 996

Notes: Column GMM1 to GMM7 shows the estimations of ρ using GMM with different moment
conditions. GMM1 uses (C-2) and (C-3). GMM2 uses (C-2) and (C-4). GMM3 uses (C-2) and
(C-5). GMM4 uses (C-2), (C-3) and (C-4). GMM5 uses (C-2), (C-3) and (C-5). GMM6 uses (C-
3), (C-4) and (C-5). GMM7 uses (C-2), (C-3), (C-4) and (C-5). The last column uses nonlinear
least squares (NLS) with objective function (C-6). HAC standard errors with 12 lags are reported
in parentheses.

the estimation errors, but does not significantly change the estimated value of ρ.

C.7. Plots of Near-Money Quantities and Spreads

In Figure 10, we show the quantities and spreads used in Section 3. Quantities include

KVJ net deposits, MMF, and bank deposits, where KVJ net deposits is defined as KVJ de-

posits (broadly-defined financial sector short-term liabilities in Krishnamurthy and Vissing-

Jorgensen (2015)) minus bank deposits. Both KVJ net deposits and MMF are measures

of the shadow banking sector. Spreads include P2CP–P1CP spread, P2CP–MMF spread,

P2CP–T-bill spread, and P2CP–deposit spread. The P2CP–deposit spread is a projection

of the original spread (P2CP 3 month rate minus average deposit rate) onto the FFR.

C.8. Substitution Between T-bills and Bank Deposits

Given that the total amount of Treasurys is mainly driven by longer-maturity bonds, the

main result suggests a medium elasticity of substitution between longer-maturity bonds and

deposits. To study the substitution between T-bills and bank deposits, in this subsection, we

implement an estimation based on T-bill/deposits, instead of Treasuries/deposits. Results

are shown in Table 21. We find that ρ estimated using “Net Tsy/Deposits” is smaller than
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Table 19: Liquidity Premium Regressions in Log Terms (without VIX)

Dependent variable: log(liquidity premiumt)

Full Sample Excluding the WWII Period

(1) (2) (3) (4) (5) (6)

log(FFRt) 0.45 0.46 0.49 0.44 0.42 0.50
(0.09) (0.09) (0.09) (0.08) (0.08) (0.08)

log(Net Tsyt
GDPt

) −0.47 −0.32

(0.18) (0.16)

log( Net Tsyt
Depositst

) −0.58 −0.51

(0.18) (0.17)

log( Net Tsyt
KVJ Depositst

) −0.61 −0.41

(0.19) (0.18)

Constant −2.43 −2.12 −2.44 −2.14 −1.96 −2.20
(0.27) (0.17) (0.21) (0.25) (0.15) (0.21)

Observations 1,055 903 1,033 951 799 929
R2 0.39 0.43 0.44 0.36 0.43 0.39

Notes: Refer to Table 1 for variable definitions. This table shows the basic regression
(excluding VIX) in log terms. Column 1–3 uses the full sample while Column 4–6 excludes
the WWII period (1942–1951). Newey-West standard errors with 12 lags are shown in
parentheses.
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Table 20: GMM Estimations of ρ without VIX

Measurement of B/D

Net Tsy
Deposits

Net Tsy
KVJ Deposits

Net Tsy
Deposits

Net Tsy
KVJ Deposits

(1) (2) (3) (4)

ρ 0.657 0.642 0.672 0.597
(0.134) (0.252) (0.213) (0.232)

βλ 0.012 0.010 0.012 0.009
(0.001) (0.003) (0.002) (0.003)

p-value of J-test 0.904 0.853 0.911 0.93
Total Treasury Instrument? No No Yes Yes
Variations explained 63.8% 63.2% 63.7% 63.6%
Observations 996 972 996 972

Notes: Refer to Table 1 and 6 for variable definitions. We set the relative demand as

λt
1− λt

= βλ ·mean(VIX)

In other words, we shut off the variations in VIX. As a result, the moment related to
VIX is dropped in all estimations. In column 3 and 4, we instrument the quantity ratio
by total Treasury/GDP and (total Treasury/GDP)2.
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Fig. 10. Near-Money Quantity and Spread Measures.

that in Table 6, while ρ estimated using “Net Tsy/KVJ Deposits” is larger than that in

Table 6. However, the differences are not statistically significant.

Table 21: Estimations with T-bills

Measurement of B/D

T-bills
Deposits

T-bills
KVJ Deposits

T-bills
Deposits

T-bills
KVJ Deposits

(1) (2) (3) (4)

ρ 0.377 0.996 0.649 0.674
(0.214) (0.314) (0.292) (0.653)

βλ 0.007 0.016 0.009 0.007
(0.002) (0.011) (0.004) (0.011)

p-value of J-test 0.072 0.204 0.170 0.127
Total Treasury IV? No No Yes Yes
Variations explained 68.3% 64.6% 67.3% 65%
Observations 840 816 840 816

Notes: This table shows the two-step GMM estimations of parameters ρ and βλ when
we measure Bt as T-bills. Data are at a monthly frequency and cover 1947–2017. In
column (1) and (2), we estimate the GMM system as in equation (21). In column
(3) and (4), we use Total Tsy/GDP and (Total Tsy/GDP)2 as instruments instead
of the Bt/Dt ratio. HAC standard errors with 12 lags are reported in parentheses.
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C.9. Varying the Projection of Deposits Spread on FFR before 1986

In 1986, all deposits rate ceilings are abandoned, and the deposits spread data inflow of

funds start to be available. Therefore, the only uncertainty brought by the approximation of

deposits spread via FFR is before 1986. We examine how the projection coefficient δ affects

our main results while keeping the post-1986 deposit spread data the same.

We vary the δ from 0.3 to 0.6 (including the actual projection coefficient 0.38) and show

how estimates change accordingly in Table 22. We find that as δ increases beyond 0.38, the

estimated ρ increases, but the p-value and R both decline, indicating a worse approximation.

For δ between 0.3 and 0.5, the estimated coefficient is close to the main results in Table 6.

For δ = 0.7, the standard error on ρ increased significantly while the p-value drops.

Table 22: Adjusting the pre-1986 Deposit Spread Projection

Projection Coefficient of Deposit Spread on FFR

δ =0.3 δ =0.38 δ =0.4 δ =0.5 δ =0.6

(1) (2) (3) (4) (5)

ρ 0.458 0.585 0.613 0.784 1.011
(0.146) (0.180) (0.189) (0.228) (0.260)

βλ 0.011 0.010 0.010 0.009 0.010
(0.002) (0.002) (0.002) (0.002) (0.002)

p-value of J-test 0.688 0.559 0.515 0.33 0.209
Variations explained 66.6% 66.6% 66.4% 64.9% 62.3%
Observations 996 996 996 996 996

Notes: This table shows the GMM estimations of parameters ρ and βλ when we vary the
projection coefficient δ for the period before 1986. We instrument the quantity ratios Bt/Dt

(measured as deposits/net Treasury) by total Treasury/GDP and (total Treasury/GDP)2.
HAC standard errors with 12 lags are reported in parentheses.

In Figure 11, we show p-values and R2 as a function of δ. We find that the post-1986

projection coefficient, δ = 0.38, is also the close to the best approximation of deposit spread

in terms of the model’s p-value and R2.

C.10. Multiplicative Residuals

In the main specification (17), we assume that the residual is additive to the model

prediction. Another possible specification is that the residual is multiplicative. We report
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Fig. 11. Model Fit under Different Deposit Spread Projection Coefficients (δ)

the main GMM estimation under that specification in Column 1 of Table 23. The estimated

ρ is 0.5 and still quite different from 1. However, the model fit is much worse and the p-value

is only 0.0002, which implies that we should reject the model as a reasonable description of

the data. The reason for the poor fit is that the interest rate is extremely low after the 2008

financial crisis and multiplicative residuals have a structure break from the pre-2008 period.

To address this concern, we use three different methods. First, we restrict the estimation to

the pre-2008 data (Column 2); Second, we introduce a “level-shift” parameter βlevel (Column

3) so that the specification becomes

lpt =

(
βλstVIXt(

Bt

Dt

)ρ−1 + βlevel1t≥2008

)
εt. (C-9)

Third, we introduce a “multiplicative-shift” parameter βmulti (Column 4) so that the speci-

fication becomes

lpt = βλstVIXt(
Bt

Dt

)ρ−1 · (1 + βmulti1t≥2008)εt. (C-10)

As shown in Table 23, using only pre-2008 data significantly improves the p-value of J-test

over the full-sample analysis, indicating the problem with post-2008 data in the multiplicative-

residual model. This improvement can also be achieved by the level-shift parameter or the

multiplicative-shift parameter, as shown in columns 3 and 4. Furthermore, the estimated

substitution parameter ρ is low across all specifications and confirms the robustness of our

main conclusion that Treasuries and deposits are imperfect substitutes.
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Table 23: GMM Estimations with Multiplicative Residuals

Estimated Values

(1) (2) (3) (4)
Parameters full sample pre-2008 level-shift multi-shift

ρ 0.40 0.51 0.59 0.27
(0.56) (0.26) (0.73) (0.63)

βλ 0.01 0.01 0.01 0.01
(0.003) (0.002) (0.01) (0.003)

Observations 996 900 996 996
p-values 0.133 0.605 0.122 0.075

Notes: This table shows the two-step GMM estimations of parameters ρ and βλ,
assuming that the residual of the model prediction is multiplicative. Column 1,3,
and 4 use monthly data from 1934 to 2017. Column 2 uses monthly data from 1934
to 2008. The specification in Column 3 introduces a “level-shift” parameter as in
(C-9) and the specification in column 4 introduces a “multi-shift” parameter as in
(C-10). HAC standard errors with 12 lags are reported in parentheses.

C.11. Money-Demand Regressions

In Section 3, we use the time-varying µt and λt. In this appendix section, we will

show that the time-series variations in µt and λt is not important in the money-demand

regressions. Then we will show the impact of including currency in circulation into the

monetary aggregate.

In Table 24, we replicate the same regressions as in Table 11, but set λt and µt as constants

and equal to their average values implied by βλ, βµ, and VIXt. We find that results are very

similar, so even without the time-varying relative liquidity proxies, we are still able to achieve

a stable money-demand relationship using our new definitions of liquidity bundles.

To further illustrate this point, in Figure 12, we show the money demand relationships

using constant λt and µt. We find that the plots are very similar to those in Figure 7.

Finally, we consider currency in circulation, which we have thus far omitted but is custom-

ary to include in monetary aggregates. We include currency in Dt and otherwise aggregate

non-bank debt and Treasury bonds following the same procedure. These new aggregates

are denoted as Q̄ and Q̄′. Then we regress log(Q̄) and log(Q̄′) on the same regressors as in

Table 11. We find that the inclusion of currency stabilizes the demand function further, as

is evident in Table 25.
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Table 24: Money Demand Regressions with Constant µt and λt

Dependent variable:

log(mt/real GDPt) log(Qt/real GDPt) log(Q′t/real GDPt)

pre 1980 post 1980 pre 1980 post 1980 pre 1980 post 1980
(1) (2) (3) (4) (5) (6)

log(deposit spreadt
1+it

) −0.317 −0.089 −0.090 −0.115 −0.062 −0.098

(0.012) (0.006) (0.008) (0.004) (0.007) (0.003)

log(real GDPt) −0.173 −0.515 −0.006 −0.340 −0.010 −0.335
(0.016) (0.030) (0.011) (0.021) (0.011) (0.018)

log(VIXt) 0.023 −0.076 0.035 −0.043
(0.013) (0.016) (0.012) (0.013)

Constant 0.040 2.785 −0.745 2.509 −0.777 2.363
(0.131) (0.280) (0.115) (0.202) (0.109) (0.165)

Observations 552 444 552 444 552 420
R2 0.894 0.409 0.560 0.671 0.440 0.676

Notes: This table presents the money demand regressions with different definitions of
money, where mt is the real quantity of money including currency and checking deposits,
Qt is the real value of liquidity bundle as in equation (6), and Q′t is the real value of
liquidity bundle as in equation (23). We set λt and µt as constant and equal to their
mean values. HAC standard errors with 12 lags are reported in parentheses.
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Table 25: Money Demand Regressions (including currency in circulation)

Dependent variable:

log(mt/real GDPt) log(Q̄t/real GDPt) log(Q̄′t/real GDPt)

pre 1980 post 1980 pre 1980 post 1980 pre 1980 post 1980
(1) (2) (3) (4) (5) (6)

log(deposit spreadt
1+it

) −0.317 −0.087 −0.120 −0.110 −0.093 −0.093

(0.012) (0.006) (0.008) (0.004) (0.008) (0.003)

log(real GDPt) −0.172 −0.512 −0.005 −0.287 −0.006 −0.278
(0.016) (0.030) (0.012) (0.020) (0.012) (0.016)

log(VIXt) 0.015 −0.072 0.029 −0.040
(0.014) (0.014) (0.013) (0.011)

Constant 0.033 2.751 −0.640 2.092 −0.686 1.907
(0.131) (0.278) (0.124) (0.185) (0.117) (0.146)

Observations 552 444 552 444 552 420
R2 0.894 0.409 0.618 0.704 0.541 0.715

Notes: This table presents the money demand regressions with different definitions of
money, where mt is the real quantity of money including currency and checking deposits.
Q̄t follows the same construction as equation (6) for Qt but we incorporate currency in
circulation into Dt. Another liquidity aggregate, Q̄′t, follows the same construction as
equation (23) for Q′t but we include currency in circulation into the construction of Dt.
Newey-West standard errors with 12 lags are reported in parentheses.
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Fig. 12. Quantity of Liquidity and the Opportunity Cost of Holding Liquidity. The y-axis
is log(deposit spreadt/(1 + FFRt)) across all three panels. Data are annual averages, with
the years marked on the figure.
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