
Why Naı̈ve 1/N Diversification Is Not So Naı̈ve,

and How to Beat It?*

Ming Yuan

Columbia University

Email: ming.yuan@columbia.edu

Guofu Zhou

Washington University in St. Louis

Email: zhou@wustl.edu

Current version: January 2022

*We are grateful to Victor DeMiguel, John Dooley, Lorenzo Garlappi, Raymond Kan, Nathan Lassance, L̆ubos̆
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Why Naı̈ve 1/N Diversification Is Not So Naı̈ve,

and How to Beat It?

Abstract

In this paper, we study the portfolio choice problem under estimation risk and show why the 1/N

rule is very difficult to beat in applications and studies. First, as long as the dimensionality is

high relative to sample size, we show that the usual estimated investment strategies are biased

even asymptotically. Second, we show that the 1/N rule is optimal in a one-factor model with

diversifiable risks as dimensionality increases, irrespectively of the sample size, making investment

theory-based rules inadequate as they suffer from estimation errors. Third, we provide strategies

that can outperform the 1/N under suitable conditions.
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1. Introduction

Portfolio choice is obvious truly one of the most important aspects of investment theory, and the

mean-variance framework pioneered by Markowitz (1952) seminal work has been the major model

used in practice in asset allocation and active portfolio management.1 However, to implement

the mean-variance optimal portfolio, both asset expected return and covariance matrix must be

estimated, introducing the well-known estimation risk problem. Brown (1976) and Bawa, Brown,

and Klein (1979) and Jorion (1986), Jagannathan and Ma (2003), MacKinlay and L̆ubos̆ Pástor

(2000) and Ledoit and Wolf (2004) and Kan and Zhou (2007) are examples of earlier studies that

provide various strategies to overcome the estimation risk, but the performances of these strategies

are sample size dependent. In their highly influential study, DeMiguel, Garlappi and Uppal (2009)

compare these strategies with the naı̈ve 1/N investment strategy that invests equally among N risky

assets.2 They find astonishingly that

“the estimation window needed for the sample-based mean-variance strategy and its

extensions to outperform the 1/N benchmark is around 3000 months for a portfolio with

25 assets and about 6000 months for a portfolio with 50 assets.”

Their finding raises a serious issue on the value of investment theory as the sample size is

too large for the theory to be realistically applied in practice. To overcome the estimation risk,

DeMiguel, Garlappi, Nogales and Uppal (2009), Duchin and Levy (2009), Tu and Zhou (2011),

Kirby and Ostdiek (2012), DeMiguel, Martin-Utrera and Nogales (2015), Ledoit and Wolf (2017),

Lassance, Martin-Utrera and Simaan (2021), Kan, Wang and Zhou (2021), among others, propose

additional portfolio strategies that have improved performances. However, it is unknown why those

strategies can beat the 1/N in some data sets and still cannot in others.

1See, e.g., Grinold and Kahn (1999), Litterman (2003), Meucci (2005), Qian, Hua, and Sorensen (2007) and
references therein.

2Their paper has over 3100 Google citations. The 1/N strategy was known as the Talmud rule more than 1500
years ago (Duchin and Levy (2009)).
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In this paper, we aim at providing a deep theoretical understanding of both of the 1/N and

some of the major related estimated portfolio strategies, shedding light on why the estimated rules

often cannot beat the 1/N, as well as providing conditions under which our proposed rules can

beat the 1/N. Specifically, we make three major contributions. First, we obtain both the exact and

asymptotic distributions of the Sharpe ratio of the combination strategy that combines the plug-in

with the estimated global minimum portfolio (GMV). The exact distribution is useful to understand

what drives the performance of the rule. Kan, Wang and Zheng (2020) provide the first exact

distribution for the Sharpe of the plug-in rule, ours extend their result to the general three-fund

case. In particular, we obtain also the exact distribution of the Sharpe ratio of the GMV, which

is widely used in practice to avoid estimating the mean (see, e.g., Kempf and Memmel (2006),

Basak, Jagannathan and Ma (2009) and Bodnar, Parolya and Schmid (2018) for its properties).

The asymptotic distribution concerns the case when N is large, but N < T and N/T approaches

a constant as sample size T increases to infinity. This large dimension case is quite relevant in

practice and in existing studies. For example, the sample size T is 120 whereas N varies from 3 to

24 (see, e.g., Table 3 of DeMiguel, Garlappi and Uppal (2009)). Complimenting Ao, Li and Zhen

(2019) who obtain the asymptotic distribution of the Sharpe ratio for the plug-in rule, we obtain

it for the general three-fund strategy. The asymptotic distribution is valuable for understanding

easier the performance of the various rules. In particular, while it is well known that the general

three-fund, a special case of which is the plug-in, is optimally for large T but fixed N, we show

that it is asymptotically biased in the large N case.

The second contribution of our paper is to show that the 1/N is optimal when N is large enough,

under the condition that the asset returns are governed by a one-factor model with diversifiable

risks. This result is very intuitive once known, and is yet very powerful. If there is one factor that

prices all the assets with diversifiable risks, then the 1/N portfolio must be a portfolio of the factor

with the average betas as the weight plus idiosyncratic risks. Since the risks are diversifiable, they

will not alter the Sharpe ratio of the 1/N portfolio in the limit. Hence, the Sharpe ratio of the 1/N
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portfolio must approach that of the factor and be optimal.

The third contribution is to propose new rules that can beat the 1/N under certain conditions.

We consider two cases which require two fundamentally different solutions. In the first case when

N < T , we consider the combination rule of combining the plug-in with the 1/N. Tu and Zhou

(2011) is the first to study such a rule. In contrast to their study, we focus on maximizing the Sharpe

ratio, which is a popular criterion in practice, instead of the expected mean-variance utility. We

obtain both the exact distribution of the Sharpe ratio of the combination rule, and the asymptotic

distribution in the high dimensional case. We also solve explicitly the combination coefficient that

maximizes the asymptotic Sharpe ratio.

In the case of N > T , we consider a long-short portfolio that long assets with extreme positive

alphas relative to the 1/N, and short those with extreme negative ones. We show that adding this

portfolio to the 1/N will improve it strictly unless all the true alphas are zeros.

It will be useful to discuss the difference and limitation of our paper. We focus here on Sharpe

ratios, while many studies focus on the expected mean-variance utility, which Lassance, Martin-

Utrera and Simaan (2021) extend into a more robust framework by considering the uncertainty

associated with utility maximization. Without estimation errors, all are equivalent. With estimation

errors, the objectives are mathematically different. Lassance (2021) provides an interesting

comparison between the two setups in the fixed N case. In contrast, we focus on Sharpe ratio only

and on comparing existing strategies with the 1/N in the high dimension case. Our paper shows

the optimality of the 1/N rule only in a restricted one-factor model. In a general multi-factor

APT, Raponi, Uppal and Zaffaroni (2021) provide a new strategy with superior out-of-sample

performance.

The rest of the paper is organized as follows. Section 2 discuss properties of the common

estimated rules. Section 3 provides conditions under which the 1/N is optimal. Section 4 explores

ways to outperform the 1/N. Section 5 concludes.
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2. Bias of estimated rules

Consider the standard mean-variance portfolio choice problem in which an investor chooses his

optimal portfolio among N risky assets and a riskfree asset. Denote the returns of the N risky

assets at time t by rt , and r f the return on the riskfree asset. Let Rt = rt − r f be an N-vector of the

excess returns, with mean µ and covariance matrix Σ.

In the absence of estimation errors, the optimal portfolio weights are well known,

w =
1
γ

Σ
−1

µ, (1)

where γ is a risk aversion parameter, and the optimized Sharpe ratio is

SR =
√

µ⊤Σ−1µ. (2)

However, the parameters µ and Σ are unknown, and are usually estimated from data.

Suppose there are T periods of observed excess returns data, the common sample estimates are

µ̂ =
1
T

T

∑
t=1

Rt , (3)

Σ̂ =
1

T −1

T

∑
t=1

(Rt − µ̂)(Rt − µ̂)⊤. (4)

The data are usually assumed identically and independently distributed (iid). For obtaining exact

distributional results, they are further assumed to be normal, that is, Rt ∼ N(µ,Σ).

The plug-in rule or the estimated optimal portfolio weights are those replacing the unknown

parameters by their estimates,

ŵ =
1
γ

Σ̂
−1

µ̂. (5)
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Since it is the estimates rather than the true parameters that are used, this introduces the estimation

errors in the portfolio weights, making the resulting portfolio will not necessarily achieve the

optimal Sharpe ratio.

The estimated global minimum portfolio (GMV) is also very popular in practice. Without

estimation errors, the GMV portfolio weights are

wg =
Σ−11N

1⊤N Σ−11N
, (6)

and so the sample version are

ŵg =
Σ̂−11N

1⊤N Σ̂−11N
. (7)

It may be noted that the estimation errors occur only in Σ̂−1.

Kan and Zhou (2007), to improve the plug-in rule, propose the following three-fund rule,

ŵλ = (1−λ )
1
γ

Σ̂
−1

µ̂ +λ Σ̂
−11N , λ ∈ [0,1], (8)

which is a combination of the plug-in, estimated GMV, and the risk free asset.3 Lassance,

Martin-Utrera and Simaan (2021) examine how such a rule performs in their proposed robustness

framework.

Let SRλ be the Sharpe ratio of the three-fund rule ŵλ . We are here interested in the exact

distribution of SRλ . Let µg and σ2
g be the expected return and variance of the GMV portfolio,

µg =
µ⊤Σ−11N

1⊤N Σ−11N
, σ

2
g =

1
1⊤N Σ−11N

.

3Kan and Zhou (2007) two different combination coefficients, which can be scaled to allow their sum be one
without affecting the Sharpe ratio.
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Its Sharpe ratio is given by

SRg =
µg

σg
=

µ⊤Σ−11N

(1⊤N Σ−11N)1/2
.

Then the distribution is given by (all proofs are provided in the appendix)

Proposition 1: Assume that T >N+2. Let W ∼Wishart(IN/(T −1),T −1) and X ∼N(0, IN/T )

be independent of each other. Then the exact distribution of SRλ is

SRλ =d
A

B1/2 , (9)

where

A = ((1−λ )SR2 +λγσ
−1
g SRg) · (e⊤1 W−1e1)+λγσ

−1
g
(
SR2 −SR2

g
)1/2 · (e⊤2 W−1e1)

+
(1−λ )

(
(1−λ )SR2 +λγσ−1

g SRg
)

((1−λ )2SR2 +λ 2γ2σ
−2
g +2(1−λ )λγσ

−1
g SRg)1/2

· (e⊤1 W−1X)

+(1−λ )λγσ
−1
g

(
SR2 −SR2

g

(1−λ )2SR2 +λ 2γ2σ
−2
g +2(1−λ )λγσ

−1
g SRg

)1/2

· (e⊤2 W−1X).

and

B = ((1−λ )2SR2 +λ
2
γ

2
σ
−2
g +2(1−λ )λγσ

−1
g SRg)(e1W−2e1)+(1−λ )2(X⊤W−2X)

+2(1−λ )((1−λ )2SR2 +λ
2
γ

2
σ
−2
g +2(1−λ )λγσ

−1
g SRg)

1/2(e⊤1 W−2X)

with e1 and e2 being the first two canonical basis of RN .

Proposition 1 shows that the exact distribution of the three-fund rule is the same as the righthand

side, which is related to the three usual mean-variance frontier parameters. The role played by N

and T are not explicit, but implicit in W and Z which are independent of any unknown parameters

µ and Σ. Although the distribution is of unknown form, it can be computed with arbitrary accuracy

6



via Monte Carlo integration for any given key mean-variance frontier parameters.

Let us examine some special cases. When λ = 0, we have

Corollary 1: For any T > N +2, the exact distribution of the Sharpe ratio of the plug-in rule is

SRŵ =d
SR2(e⊤1 W−1e1)+SR(e⊤1 W−1X)(

SR2(e⊤1 W−2e1)+X⊤W−2X +2SR(e⊤1 W−2X)
)1/2 , (10)

Kan, Wang and Zheng (2020) provide the first explicit expression for the exact distribution of SRŵ.

Equation (10) provides a complimentary alternative expression. It is interesting that, given the true

Sharpe ratio SR, the Sharpe ratio performance of the plug-in rule has nothing to do any parameters

of the model. Both N and T play important roles and they matter only through their impact on W

and Z that summarizes the effects of estimation errors.

When λ = 1, we have

Corollary 2: For any T > N +2, the exact distribution of the Sharpe ratio of the GMV rule is

SRĝ =d
SR

(e1W−2e1)1/2

(
ρ(e⊤1 W−1e1)+(1−ρ

2)1/2(e⊤2 W−1e1)
)
, (11)

where

ρ =
SRg

SR
=

(1⊤N Σ−1µ)

(1⊤N Σ−11N)1/2(µ⊤Σ−1µ)1/2

is the fraction of the population Sharpe ratio of the GMV, SRg, relative to the true Sharpe ratio.

Kempf and Memmel (2006) and Basak, Jagannathan and Ma (2009), among others, study

various properties of the GMV. The exact distribution, (11), compliments their studies. It is

interesting that the distribution of the GMV depends not only on SR, but also on ρ . In contrast

to SRŵ, it requires one more parameter. Nevertheless, the exact distribution of SRĝ is the simplest,

and that of SRŵ still looks simple. In contrast, the distribution of SRλ is rather complex, whose
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complexity is introduced by the correlation between ŵ and ŵg.

While it is well known that, for a fixed N, as the sample size increases to infinity, the Sharpe

ratio of the three-fund rule, a special case of which is the plug-in rule, converges to the optimal

one. But, when N is not small relative to T , this is no longer true, as shown below.

Proposition 2: As N/T approaches 0 < η < 1, as T approaches infinity, then

SRλ = τλ SR+Op(T−1/2), (12)

where

τλ =
((1−λ )SR2 +λγσ−1

g SRg) · (1−η)1/2√
(1−λ )2SR2 +λ 2γ2σ

−2
g +2(1−λ )λγσ

−1
g SRg +(1−λ )2η

< 1,

and Op(·) denotes a bounded function in probability. .

In contrast to the exact distribution (9) with complex terms of A and B, (12) is much simplified

with only a simple scalar τλ . For any given η > 0, τλ is always less than 1, implying that the

three-fund rule will never approach optimal as T approaches infinity. Therefore, it is biased

asymptotically regardless of the true parameters as long as the mean-variance frontier is well

defined.

The asymptotic distribution allows us to choose λ to maximize the Sharpe ratio. If µ is not a

proportional constant vector, then the optimal λ is given by

λ
∗ =

SR2 −SR2
g

γ(SR2 −SR2
g)+ησgSRg

Given an estimate of the three mean-variance frontier parameters, λ is straightforwardly solved

from the above. Note that the optimized λ is strictly greater than 0 whenever GMV has a nontrivial

expected return, i.e., µg ̸= 0, indicating that the combination is always beneficial.
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In the special case of λ = 0, we have

Corollary 3: As N/T approaches 0 < η < 1, and T approaches infinity, then

SRŵ = τSR+Op

(
1√
T

)
, (13)

where

τ =

√
1−η

1+η/SR2 < 1.

Ao, Li and Zhen (2019) is the first, to our knowledge, to obtain (13) for the plug-in rule.

However, their focus is different from ours. To compare the plug-in with the 1/N, let SR1/N be the

Sharpe ratio of the latter, and

δ = SR1/N/SR (14)

be the fraction of Sharpe ratio the 1/N can achieve. An immediate implication of Corollary 3 is

that, if

η >
1−δ 2

1+δ 2/SR2 , (15)

then

SRŵ < SR1/N +Op

(
1√
T

)
,

i.e., the naı̈ve diversification is asymptotically superior to the plug-in portfolio. Condition (15) is

useful for a quick check on the efficiency of ŵ.

It is of interest to examine the earlier quoted finding of DeMiguel, Garlappi and Uppal (2009)

in light of (15). Assume that δ = 90% (which is quite possible given results in the next section).

With the same Sharpe ratio assumption as before, then η needs to be smaller than 30.78% in order

for SRŵ to be greater than SR1/N , implying a sample size of T > 3000.

In the special case of λ = 1, we have
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Corollary 4: As N/T approaches 0 < η < 1, and T approaches infinity, then

SRĝ = τgSR+Op(T−1/2), (16)

where

τg = ρ(1−η)1/2 < 1.

Bodnar, Parolya and Schmid (2018) provide estimation approaches to the GMV in the high

dimensional case. In contrast, we compare the Sharpe ratios of ŵg with that of the optimal one.

Equation (16) shows strikingly that the effect of the estimation errors is captured solely by the term

(1−η)1/2. In contrast with ŵ, the absolute size of the true SR is irrelevant given ρ , and only the

faction N/T matters. Intuitively, holding the covariance matrix constant, the smaller the SR, the

smaller the means, and hence the more difficult to estimate µ . The larger estimation errors lead to

the performance depending on the magnitude of SR. In opposition to this, ŵg does not require the

estimation of the mean, and so its asymptotic behavior is much simpler.

Indeed, the GMV is very popular in practice due to its reduced estimation errors without

estimating the means. There are many studies on the GMV for its practical use. Hafner and

Wang (2021), for example, impose sector restriction on the GMV to enhance its performance. In

light of the asymptotic theory, we can see that the GMV is better asymptotically if and only if

ρ >
SR√

η +SR2
. (17)

For example, if η = 0.20 and SR = 0.1443, then SR/
√

η +SR2 = 0.3071. As it is quite likely

that the population GMV should be able to achieve more than 30% of the true Sharpe ratio, and

hence the GMV is preferred. However, this is not always the case. When η is very small, say,

η = 0.01, then the right hand will be 82.19%, making the GMV unlikely to beat the plug-in rule

asymptotically.
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In summary, this section provides a thorough analysis of the three-fund rule, which is shown by

a number of studies performing better than its special cases, the plug-in and the estimated GMV.

The important message is that all of the estimated rules are asymptotically biased even as the

sample size is large, as long as N is large too. This make them far from optimal. On the other

hand, as we will show, the 1/N can be optimal under certain conditions. Then, combining these

two observations, it is no wonder that 1/N is hard to beat in practice.

3. Optimality of 1/N

Since the naı̈ve 1/N investment strategy, which invests equally among N risky assets, has the

portfolio weights

w1/N =
1
N

1N , (18)

which are parameter independent, and so there are no estimation errors whatsoever. However,

since it differs from the true portfolio weights

w =
1
γ

Σ
−1

µ,

it will not be optimal in general unless w happens to be equal to w1/N .

It is a common belief that the 1/N rule is close to optimal only when it is close to the true

weights, which is clearly very rare. In fact, as we show below, the 1/N rule can in fact converge to

the optimal Sharpe ratio as N increases, under seemingly general conditions.

Assume that we have the following one-factor model for all the assets,

Ri = βiRq + εi, i = 1,2, . . . ,N, (19)

where Rq is the excess return on the tangency portfolio in the mean-variance frontier, and is
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uncorrelated with the εi’s. Under the standard assumptions for the mean-variance portfolio theory,

the Two-fund Separation Theorem implies the above (see, e.g., Huang and Litzenberger, 1988,

p. 80). The key additional assumption we make is that idiosyncratic risks, the εi’s, are diversifiable

enough so that

(1⊤N Σε1N)/N2 −→ 0, as N → ∞, (20)

where Σε is the covariance matrix of ε = (ε1,ε2, . . . ,εN)
′. Consider a few well known cases. If the

idiosyncratic risks has a bound, σ2
max, on their variances, then it is clear that

(1⊤N Σε1N)/N2 ≤ σ
2
max/N −→ 0.

Another simple case is short-distance dependence:

cov(εi,ε j) = 0, if |i− j| ≥ κ0

for some constant κ0. A more general condition is

cov(εi,ε j)≤C|i− j|−ν

for some ν > 1. Yet another one is block diagonal – the assets can be clustered (into industries) –

so that there is no cross-dependence across clusters. Denote by C(i) the cluster asset i falls into,

then

cov(εi,ε j) = 0, if C(i) ̸=C( j).

The condition holds if the size of the largest cluster is of order smaller than N. This condition may

be extended to allow short-distance dependence among clusters.

Interestingly, in their testing of beta-pricing models, Raponi, Robotti and Zaffaroni (2020)
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impose a very similar condition, their (22), that

∑
i̸= j

|E[εiε j]|= o(N),

and they note that it is a condition of sufficient weak correlation and a condition weaker than the

one behind the arbitrage pricing theory (APT) of Ross (1976). The above condition together with

bounded variances clearly imply our condition (20).

Assume further that the average beta converges,

β̄ = (β1 + · · ·+βN)/N −→ β0 > 0, (21)

and the cross sectional variation in the betas has a finite variance. Then, we have

Proposition 3: Under assumptions (19), (20) and (21), the 1/N is asymptotically optimal, i.e.,

SR1/N = SR+O(N−1/2), (22)

where SR1/N is the Sharpe ratio of the 1/N rule.

It will be of interest to examine some special cases. Consider first the case in which the CAPM

is true so that Rq = Rm − r f . Then the excess return of holding an equal-weighted portfolio of

the assets will the same as holding a portion of the market excess return plus an equal-weighted

portfolio of the idiosyncratic risks,

1
N

1⊤N R− r f = β̄ (Rm − r f )+
1
N

1⊤N ε.

Since the idiosyncratic component is uncorrelated with the market and its variance approaches zero

due to enough diversification, then the 1/N portfolio excess return will be equivalent to holding

13



the market excess return as the proportion constant will not affect the Sharpe ratio. Hence, the 1/N

tends to optimal.

The intuition is that, if there is one factor that prices all the assets, the 1/N portfolio will be a

portfolio of that factor and idiosyncratic noises. As long as the idiosyncratic risks are diversified

away with large N, the 1/N is equivalent to the efficient portfolio, and so it achieves optimality.

Empirically, it is known that it is very difficult to beat the market (see, e.g., Harvey and Liu

(2020)). Consistent with this, He, He, Huang and Zhou (2021) find that factor models beyond

the CAPM provide little reduction in pricing errors for individual stocks. Also the CAPM is the

major factor model investors and fund managers care the most (Berk and van Binsbergen (2016)).

Therefore, conditional on the CAPM is difficult to beat, Proposition 3 explains why the 1/N is

hard to beat too in practice.4

In the case of applying the 1/N to a large set of representative assets, the market portfolio

is likely the main factor if not the only one. Then the above argument will be approximately

true. Another case is to apply the 1/N within a sector. The sector index has typically most of the

systematic risk. In the absence of obvious alphas relative to the index, the 1/N is also difficult to

beat.

Note that we have only shown the optimality of the 1/N rule in our simple one-factor model

without pricing errors. This conclusion is clearly not true in a general multi-factor APT model.

Raponi, Uppal and Zaffaron (2021) provide a related general robust framework that decompose

portfolios into alpha and beta portfolios, and exploit the different economic properties of each of

the components. Building on this, they show that, as N increases, their new strategy generates

an economically substantial and statistically significant improvement in out-of-sample portfolio

performance over existing methods.

4The same argument as in Proposition 3 shows that the CAPM is theoretically valid (the market index converges to
the tangency portfolio) in a large economy if the value-weighted idiosyncratic risks are diversifiable enough, without
the usual market-clearing and representative agent assumptions.
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4. Beating the 1/N

When N < T , existing rules, such as the plug-in or the GMV, may be used to combine with the 1/N

to beat it.5 However, when N > T , none of the estimated rules can be applied due to singularity in

Σ̂−1, and a completely new approach is needed. Hence, we consider these two cases separately in

this section.

4.1. Case 1: N < T

To improve over the 1/N, we consider first the combination of the GMV with it,

ŵg,λ = λ Σ̂
−11+(1−λ )1N/N, (23)

Recall that ρ = SRg/SR and δ = SR1/N/SR. Write

θ1 = Nσ1/N

(
δe1 +

(
1−δ

2)1/2 · e2

)
and

θ2 =
ρ

σg
· e1 +

σ
−1
1/N −σ−1

g ρδ

(1−δ 2)
1/2 · e2 +

 1
σ2

g
(1−ρ

2)−

(
σ
−1
1/N −σ−1

g ρδ

)2

(1−δ 2)


1/2

· e3.

We obtain first the exact distribution of SRg,λ , the Sharpe ratio of the combination.

5The three-fund may be used for the combination too. But the exact and asymptotic distributions are too complex
that limit their practical use. Hence, we omit presenting them.
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Proposition 4: Assume that T > N +2. Then

SRg,λ =d
A

B1/2 ,

where

A = λ ·SR · (e⊤1 W−1
θ2)+(1−λ )µ1/N

and

B = λ
2
θ
⊤
2 W−2

θ2 +(1−λ )2
σ

2
1/N +

2λ (1−λ )

N
θ
⊤
1 W−1

θ2.

where W ∼Wishart(IN/(T −1),T −1).

Based on the exact distribution, we can obtain its behavior in high dimension.

Proposition 5: If N/T approaches 0 < η < 1 as T approaches infinity, then

SRg,λ = τg,λ ·SR+Op(T−1/2)

where

τg,λ =
λσ−1

g σ
−1
1/NSRg/(1−η)+(1−λ )SR1/N(

λ 2σ
−2
g σ

−2
1/N/(1−η)3 +(1−λ )2 +2λ (1−λ )σ−2

1/N/(1−η)
)1/2 .

It is interesting that the fraction of the achievable Sharpe ratio, τg,λ , is independent of SR

conditional on SRg and SR1/N . This is an extension of such a relation for τg of the GMV rule ŵg,

but is different from the plug-in rule ŵ.

To implement ŵg,λ , we choose λ to maximize the asymptotic Sharpe ratio, namely τg,λ . Based
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on Proposition 5, if σgSR1/N ̸= σ1/NSRg, then τg,λ is uniquely maximized at

λ
∗ =

(
1+

(1−η)σ−1
1/NSRg −σ−1

g SR1/N

(1−η)2(σgSR1/N −σ1/NSRg)

)−1

which is straightforward to estimate in practice.

Now we consider the combination of the plug-in with naive diversification,

ŵλ = λ ŵ+(1−λ )1N/N, (24)

where λ is a parameter between 0 and 1.6 Tu and Zhou (2011) is the first to study the performance

of such a combination. There are two major differences between our focus and theirs. First, they

focus on maximizing the expected utility, and we focus on maximizing the expected Sharpe ratio.

Second, they do not solve λ in terms of a few key parameters and do not have analytical results on

the performance. In contrast, we characterize both the exact distribution and the asymptotic one

of the Sharpe ratio, and solve λ explicitly in the high dimensional case. In the low dimensional

case, λ can be solved numerically by line search to maximize the expected Sharpe ratio based on

its exact distribution which can be computed easily.

Consider first the exact distribution of the Sharpe ratio of ŵλ . We have

Proposition 6: Assume that T >N+2. Let W ∼Wishart(IN/(T −1),T −1) and X ∼N(0, IN/T )

be independent of each other. Then

SRλ =d
A

B1/2 , (25)

where

A = λSR2(e⊤1 W−1e1)+λSR(e⊤1 W−1X)+(1−λ )µ1/N

6Similar to the three-fund case, two different combination coefficients may be used. But for our purposes, they are
simplified to one.
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and

B = λ
2SR2(e⊤1 W−2e1) + λ

2X⊤W−2X +2λ
2SR(e⊤1 W−2Z)+(1−λ )2

σ
2
1/N

+ 2λ (1−λ )δσ1/N(e
⊤
1 W−1X)

+ 2λ (1−λ )σ1/N(1−δ
2)1/2(e⊤2 W−1X)

+ 2λ (1−λ )µ1/N(e
⊤
1 W−1e1)

+ 2λ (1−λ )σ1/N(1−δ
2)1/2 ·SR · (e⊤2 W−1e1),

Unlike the case for the three-fund rule, the exact distribution here depends not only on the usual

mean-variance frontier parameters, but also on the across section average expected asset returns,

1⊤µ/N. This is in fact not surprising because it matters to the 1/N rule. Nevertheless, similar to

the three-fund case, the exact distribution can be evaluated at arbitrary accuracy with Monte Carlo

integration.

Based on Proposition 6, we can derive further the asymptotic distribution in the high

dimensional case.

Proposition 7: Assume that N/T approaches 0 < η < 1 as T approaches infinity. Then

SRλ = τλ SR+Op

(
1√
T

)
, (26)

where

τλ =
λ ·SR2/(1−η)+(1−λ )µ1/N(

(1−λ )2σ2
1/N +2λ (1−λ )µ1/N/(1−η)+λ 2SR2/(1−η)3 +λ 2η/(1−η)3

)1/2 . (27)

To implement ŵλ , we choose λ to maximize the asymptotic Sharpe ratio. Based on Proposition
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7, if 1/N is not optimal, i.e., SR1/N < SR, then τλ is uniquely maximized at

λ
∗ =

(
1+

ηSR1/N(1+SR2)

(1−η)2σ1/N(SR2 −SR2
1/N)

)−1

,

which is straightforward to estimate in practice.

Note that, when η < 1, the Sharpe ratio of the optimized combination rule, maxλ SRλ , is

always theoretically better than the naı̈ve diversification if the latter is suboptimal already, i.e.,

δ < 1. However, in practice, λ ∗ is estimated and the performance will depend on the estimation

accuracy.

4.2. Case 2: N > T

To improve the 1/N, the early combination idea is still useful, though the plug-in and the like

cannot be used. What we need to do is to find a new portfolio of assets to combine with the 1/N

instead of using existing estimated portfolios which require N < T , but now it is the case N > T .

The question is what assets that are likely to add investment value relative to the 1/N. Taking

1/N portfolio as the benchmark and denoting its excess return as RB, we consider the following

projection of asset excess returns on RB,

Ri = αi +βiRB + εi, i = 1,2, . . . ,N. (28)

It is clear that those assets with zero alphas cannot add any value to RB. If αi > 0 for some i, then

adding the pure alpha-generating asset

Rαi = Ri −βiRB

will surely improve RB in yielding a greater Sharpe ratio. If αi < 0, shorting of the asset properly
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will improve the Sharpe ratio too. Hence, an idea to improve over 1/N is to long positive alpha

assets and short negative alpha ones.

To make the investment strategy feasible, we define it in terms of the estimated alphas from

(28). Let

Π = {α̂i > ξ · se(α̂i)}∪{α̂i <−ξ · se(α̂i)} (29)

be the set of extreme estimated alphas, se(α̂) is the standard error, and ξ > 0 is the threshold. If Π

is not an empty set, we define

Rϕ̂ = ∑
α̂i>ξ ·se(α̂i)

Rα̂i − ∑
α̂i<−ξ ·se(α̂i)

Rα̂i, (30)

where Rα̂i is the asset that generates a pure alpha of α̂i relative to benchmark RB. It is clear that Rϕ̂

is a trading strategy that long positive alpha assets above the threshold, and short those below the

threshold. It is a simple method to exploit the large alphas after adjusted by their standard errors.

If ξ = 1.96, each selected asset is likely to have nonzero alphas, but there are multiple assets,

and so 5% of them will likely to have zero alphas. If the latter assets are selected, they are likely

to contribute only to the estimation errors, making the combination strategy worse than otherwise.

On the other hand, the 1/N is very difficult to beat when N is large under the one-factor model (as

shown in the previous section). Hence, in this paper, we focus only on assets with extreme alphas,

whose presence indicates that the 1/N is not optimal. If 1/N is indeed optimal, then all alphas are

zero. It is well known that in this case

max
i

α̂i/se(α̂i) =
√

2logN(1+op(1)),

assuming that they are mutually independent. See, e.g., de Haan and Ferreira (2006). Motivated

by this fact, we shall therefore set ξ to be slightly larger than
√

2logN. In doing so, we improve

the 1/N only when there is a high likelihood of beating it or when there exists extreme alphas. In
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this case, we ensure that E[Rϕ̂ ]> 0.

Consider now adding Rϕ̂ to 1/N, or a portfolio of RB and Rϕ̂ ,

Rp = w1RB +w2Rϕ̂ . (31)

Since they are uncorrelated, the optimal portfolio weights are

w1

w2

=
1
γ

 E[RB]
var[RB]
E[Rϕ̂ ]

var[Rϕ̂ ]

 , (32)

and the resulting squared Sharpe ratio is

(Sharpe Ratio)2 =
(E[RB])

2

var[RB]
+

(E[Rϕ̂ ])
2

var[Rϕ̂ ]
. (33)

Hence, we have the following

Proposition 8: Let ξ =
√

2(1+ ε) logN for an arbitrarily fixed ε > 0 (say, ε = 0.005). If Π is

not an empty set, then

SRξ ,ϕ̂ > SR1/N

with probability approaching one as N increases, where SRξ ,ϕ̂ is the Sharpe ratio of adding Rϕ̂ to

the 1/N strategy.

Admittedly, the condition of Proposition 6 may be weakened substantially. Nevertheless, it

identifies one important condition under which the 1/N can be beaten. The large threshold ξ =
√

2.01logN ensures that there is virtually a probability of 100% that the E[Rϕ̂ ] > 0. In this case,

the 1/N cannot be an efficient portfolio, and so there is a high likelihood that we can improve it.
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5. Conclusion

The modern portfolio theory pioneered by Markowitz (1952) is widely used in practice and

extensively taught at schools. Yet, the estimated Markowitz portfolio rule and most of its

extensions underperform the naı̈ve 1/N rule (that invests equally across N risky assets) in many

practical data sets. In this paper, we provide a number of analytical insights on why the estimated

rules perform poorly and why the 1/N is hard to beat.

First, as long as the dimensionality is high relative to sample size, we show that the usual

estimated rules are biased even asymptotically due to estimation errors. Second, we show that

the 1/N rule is optimal in a one-factor model with diversifiable risks as dimensionality increases,

irrespective of the sample size, making investment theory-based rules inadequate as they suffer

from estimation errors. Third, we provide strategies that can outperform the 1/N under suitable

conditions. As future research, while our study offers improved understanding of the 1/N, much

work remains to be done to show the value of investment theory by developing more theory-based

strategies to outperform the naı̈ve diversification.
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A Proofs

Proof of Proposition 1: Write α = (1−λ )/γ , then

ŵ = αΣ̂
−1

µ̂ +λ Σ̂
−11. (A.1)

Now we write

rt = Σ
1/2Xt +µ, t = 1, . . . ,T. (A.2)

Then, we have

ŵ⊤
µ = αµ

⊤
∗ S−1

µ∗+αµ
⊤
∗ S−1X̄ +λ µ

⊤
∗ S−1

Σ
−1/21

and

ŵ⊤
Σŵ = λ

21⊤Σ
−1/2S−2

Σ
−1/21

+2αλ µ
⊤
∗ S−2

Σ
−1/21+2αλ X̄⊤S−2

Σ
−1/21

+α
2
µ
⊤
∗ S−2

µ∗+α
2X̄⊤S−2X̄ +2α

2
µ
⊤
∗ S−2X̄ ,

where (T − 1)S ∼ Wishart(I,T − 1) and Z̄ ∼ N(0, I/T ) are mutually independent. Let U be a

orthonormal matrix whose first column is

Σ−1/2(αµ +λ1)√
(αµ +λ1)⊤Σ−1(αµ +λ1)

and second column is a/∥a∥ if λ ̸= 0, where

a = µ∗−
αµ⊤Σ−1µ +λ µ⊤Σ−11

(αµ +λ1)⊤Σ−1(αµ +λ1)
· (Σ−1/2(αµ +λ1)).
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Observe that W =U⊤SU ∼ Wishart(I/(T −1),T −1) and X =
√

TU⊤X̄ ∼ N(0, IN). Furthermore,

we have

ŵ⊤
Σŵ = (α2

µ
⊤

Σ
−1

µ +λ
21⊤Σ

−11+2αλ µ
⊤

Σ
−11)(e1W−2e1)+

α2

T
X⊤W−2X

+
2α√

T
(α2

µ
⊤

Σ
−1

µ +λ
21⊤Σ

−11+2αλ µ
⊤

Σ
−11)1/2e⊤1 W−2X

and

ŵ⊤
µ = (αµ

⊤
Σ
−1

µ +λ µ
⊤

Σ
−11) · (e⊤1 W−1e1)

+λ

(
(µ⊤

Σ
−1

µ)(1⊤Σ
−11)− (µ⊤

Σ
−11)2

)1/2
· (e⊤2 W−1e1)

+
α√
T

αµ⊤Σ−1µ +λ µ⊤Σ−11
(α2µ⊤Σ−1µ +λ 21⊤Σ−11+2αλ µ⊤Σ−11)1/2 · (e

⊤
1 W−1X)

+
αλ√

T

(
(µ⊤Σ−1µ)(1⊤Σ−11)− (µ⊤Σ−11)2

α2µ⊤Σ−1µ +λ 21⊤Σ−11+2αλ µ⊤Σ−11

)1/2

· (e⊤2 W−1X).

This accomplishes the proof.

Proof of Proposition 2: Noting that

E(e⊤1 W−1e2) = 0

and

var(e⊤1 W−1e2) =
(T −1)2

(T −N −1)(T −N −2)(T −N −4)
,

we have

e⊤1 W−1e2 = Op(T−1/2). (A.3)
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Similarly, we have

e⊤1 W−1e1 =
1

1−η
+Op(T−1/2), (A.4)

and

e⊤1 W−2e1 =
1

(1−η)3 +Op(T−1/2). (A.5)

In light of (A.5), with probability tending to 1,

e⊤1 W−2e1 ≤
2

(1−η)3 .

On the other hand, if X ∼ N(0, I) then conditional on W , e⊤1 W−1X ∼ N(0,e⊤1 W−2e1), and so

e⊤1 W−1X
(e⊤1 W−2e1)1/2

= Op(1). (A.6)

Together, we have

e⊤1 W−1X = Op(1). (A.7)

Similarly, we have

e⊤1 W−2X = Op(1), and e⊤2 W−1X = Op(1). (A.8)

We now consider the term X⊤W−2X . Note that

1
T
E[X⊤W−2X ] =

1
T
E[E[X⊤W−2X |W ]] =

1
T
E[tr(W−2)]→ η

(1−η)3 .

On the other hand,

1
T
E[X⊤W−2X −E[X⊤W−2X ]]2 =

2
T
E[tr(W−4)]→ η

(1−η)5 .
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Together with (A.3) and (A.4), we derive that

A = ((1−λ )SR2 +λγσ
−1
g SRg) · (1−η)−1 +Op(T−1/2)

and

B= ((1−λ )2SR2+λ
2
γ

2
σ
−2
g +2(1−λ )λγσ

−1
g SRg)(1−η)−3+(1−λ )2

η(1−η)−3+Op(T−1/2)

where A and B are defined in Proposition 1. This concludes the proof.

Proof of Proposition 3: Based on the factor model, we evaluate the expected return and variance

risk of the 1/N portfolio as

µ
⊤1/N = β̄ µq, and 1⊤Σ1/N2 = σ

2
q β̄

2 +1⊤(Σε)1/N2.

In particular, if β0 > 0 and the betas has a finite variance σ2
β

, we have

β̄ = β0 +O(N−1/2), and Nβ̄
2 = µ

2
β
+O(N−1/2).

This implies that

SR1/N =
µq

σq
+O(N−1/2). (A.9)

The proof of the statement then follows.

Proof of Proposition 4: Recall that there exist two independent random variables S∼Wishart(I,T −

1) and Z̄ ∼ N(0, I/T ) such that

Σ̂ = Σ
1/2SΣ

1/2 and µ̂ = Σ
1/2Z̄ +µ.
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Then

ŵ = λΣ
−1/2S−1

Σ
−1/21+(1−λ )1/N.

It can be derived that

µ
⊤ŵ = λ µ

⊤
∗ S−1

Σ
−1/21+(1−λ )µ1/N .

and

ŵ⊤
Σŵ = λ

21⊤Σ
−1/2S−2

Σ
−1/21+(1−λ )2

σ
2
1/N +2λ (1−λ )1⊤Σ

1/2S−1
Σ
−1/21

Now let U be an orthonormal matrix whose first column is µ∗/∥µ∗∥, second column is a/∥a∥

where

a = Σ
1/21− µ⊤1

µ⊤Σ−1µ
·µ∗,

and third column is b/∥b∥ where

b = Σ
−1/21− ((1⊤Σ1)(µ⊤Σ−11)−Nµ⊤1)µ∗+(N(µ⊤Σ−1µ)− (µ⊤1)(µ⊤Σ−11))Σ1/21

(µ⊤Σ−1µ)(1⊤Σ1)− (µ⊤1)2

= Σ
−1/21− µ⊤Σ−11

µ⊤Σ−1µ
·µ∗−

N(µ⊤Σ−1µ)− (µ⊤Σ−11)(µ⊤1)
(1⊤Σ1)(µ⊤Σ−1µ)− (µ⊤1)2 ·a.

It can be derived that U⊤Σ−1/2µ = ∥µ∗∥e1, UΣ1/21 = θ1 and UΣ−1/21 = θ2. Write W = U⊤SU

and X =
√

TU⊤Z̄. Then

µ
⊤ŵ = λSR(e⊤1 W−1

θ2)+(1−λ )µ1/N ,

and

ŵ⊤
Σŵ = λ

2
θ
⊤
2 W−2

θ2 +(1−λ )2
σ

2
1/N +2λ (1−λ )θ⊤

1 W−1
θ2/N,

which completes the proof.
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Proof of Proposition 5: With what is shown before, we have

e⊤1 W−1e1 =
1

1−η
+Op(T−1/2), e⊤1 W−2e1 =

1
(1−η)3 +Op(T−1/2)

e⊤1 W−1e2 = Op(T 1/2), e⊤1 W−1X = Op(1), e⊤1 W−2X = Op(1),

and

X⊤W−2X =
η

(1−η)3 +Op(T−1/2),

where X ∼ N(0, I) and W ∼ Wishart(I/(T − 1),T − 1) are independent of each other. The

statement follows from these equalities.

Proof of Proposition 6: Note that SRλ is also the Sharpe ratio of

ŵ = Σ̂
−1

µ̂ +ω1,

where ω = (1−λ )/(Nλ ). As before, we write

rt = Σ
1/2Xt +µ, t = 1, . . . ,T

Then, we have

ŵ⊤
µ = µ

⊤
∗ S−1

µ∗+µ
⊤
∗ S−1X̄ +ωµ

⊤1

and

ŵ⊤
Σŵ = ω

21⊤Σ1+2ωµ
⊤
∗ S−1

Σ
1/21+2ωX̄⊤S−1

Σ
1/21

+µ
⊤
∗ S−2

µ∗+ X̄⊤S−2X̄ +2µ
⊤
∗ S−2X̄ ,

where µ∗ = Σ−1/2µ .
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Now let U be an orthonormal matrix whose first column is µ∗/∥µ∗∥, and second column is

a/∥a∥, where

a = Σ
1/21− µ⊤1

µ⊤Σ−1µ
·µ∗. (A.10)

Let W =U⊤SU and X =
√

TU⊤Z̄, then we have

ŵ⊤
µ = ∥µ∗∥2e⊤1 W−1e1 +

∥µ∗∥√
T

· e⊤1 W−1X +ωµ
⊤1

and

ŵ⊤
Σŵ = ω

21⊤Σ1+2ω(µ⊤1)e⊤1 W−1e1 +2ω

(
∥µ∗∥2(1⊤Σ1)− (µ⊤1)2

)1/2
e⊤1 W−1e2

+
2ω(µ⊤1)√

T∥µ∗∥
· e⊤1 W−1X +

2ω
(
∥µ∗∥2(1⊤Σ1)− (µ⊤1)2)1/2

√
T∥µ∗∥

· e⊤2 W−1X

+∥µ∗∥2 · e⊤1 W−2e1 +
1
T
·X⊤W−2X +

2∥µ∗∥√
T

· e⊤1 W−2X .

The proof then follows from the facts that ∥µ∗∥= SR and

δ =
SR1/N

SR
=

µ⊤1
(µ⊤Σ−1µ)1/2(1⊤Σ1)1/2 . (A.11)

Proof of Proposition 7: The proof is similar to that of Proposition 2 and 5, and therefore omitted

for brevity.

Proof of Proposition 8: Denote by A the collection of the indices of the assets whose ω is zero or
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negative. Note that, if ωi = 0, we have

P[ω̂i >
√

2(1+ ε) logN · se(ω̂i)]≤ N−(1+ε). (A.12)

Therefore, with probability tending to one, for all i ∈ A , we obtain

ω̂i <
√

2(1+ ε) logN · se(ω̂i).

Denote by E this event. Let S the indices of assets such that

ω̂i >
√

2(1+ ε) logN · se(ω̂i).

Then under E , for any i ∈ S , ωi > 0.

Observe that ϕ̂ is an equal-weighted portfolio over all assets from S , and so its alpha is given

by
1

|S | ∑
i∈S

ωi > 0. (A.13)

In light of (33), we conclude that

SRλ ,ϕ̂ ≥ SR1/N , (A.14)

where the equality holds if and only S is an empty set.

30



References

Ao, M., Y. Li, X. Zhen, 2019, Approaching mean-variance efficiency for large portfolios, Review

of Financial Studies 32, 2890–2919.

Basak, K., R. Jagannathan, T. Ma, 2009, Jackknife estimator for tracking error variance of optimal

portfolios, Management Science 55, 990–1002.

Bawa, V. S., S. J. Brown, R. W. Klein, 1979, Estimation risk and optimal portfolio choice. North-

Holland, Amsterdam.

Berk, B., J. H. van Binsbergen, 2016, Assessing asset pricing models using revealed preference,

Journal of Financial Economics 119, 1–23

Bodnar, T., N. Parolya, W. Schmid, 2018, Estimation of the global minimum variance portfolio

in high dimensions, European Journal of Operational Research 266, 371–390.

Brown, S. J., 1976, Optimal portfolio choice under uncertainty: A Bayesian approach. Ph.D.

dissertation, University of Chicago.

DeMiguel, V., L. Garlappi, R. Uppal, 2009, Optimal versus naive diversification: How inefficient

is the 1/N portfolio strategy? Review of Financial Studies 22, 1915–1953.

Duchin, R., H. Levy, 2009, Markowitz versus the Talmudic portfolio diversification strategies,

Journal of Portfolio Management 35, 71–74.

Grinold, R. C., R. N. Kahn, 1999, Active Portfolio Management: Quantitative Theory and

Applications. McGraw-Hill, New York.

de Haan, L., A. Ferreira, 2006, Extreme Value Theory: An Introduction. Springer, New York.

Hafner, C., L. Wang, 2021, Dynamic portfolio selection with sector-specific regularization,

working paper.

31



Harvey, C. R., Liu, Y., 2020, Lucky factors, Journal of Financial Economics (forthcoming).

He, A., S. He, D. Huang, G. Zhou, 2021, An economic specification test of asset pricing models,

working paper.

Huang, C., R. Litzenberger, 1988, Foundations for Financial Economics, North-Holland.

Jaganathan, R., T. Ma, 2003, Risk reduction in large portfolios: Why imposing the wrong

constraints helps, Journal of Finance 58, 1651–1683.

Jorion, P. 1986, Bayes-Stein estimation for portfolio analysis, Journal of Financial and Quantita-

tive Analysis 21, 279–292.

Kan, R., X. Wang, X. Zheng, 2020, In-sample and out-of-sample sharpe ratios of multi-factor

asset pricing models, working paper.

Kan, R., X. Wang, G. Zhou, 2021, Optimal portfolio choice with estimation risk: No risk-free

asset case, Management Science (forthcoming)

Kan, R., G. Zhou, 2007, Optimal portfolio choice with parameter uncertainty, Journal of Financial

and Quantitative Analysis 42, 621–656.

Kempf, A., C. Memmel, 2006, Estimating the global minimum variance portfolio, Schmalenbach

Business Review 58, 332–348.

Kirby, C., B. Ostdiek, 2012, It’s all in the timing: simple active portfolio strategies that outperform

naı̈ve diversification, Journal of Financial and Quantitative Analysis 47, 437–467.

Lassance, N., 2021, Maximizing the out-of-sample Sharpe ratio, working paper.

Lassance, N. Martin-Utrera, A., Simaan, M., 2021, A robust approach to optimal portfolio choice

with parameter uncertainty, working paper.

Ledoit, O., M. Wolf, 2004, A well-conditioned estimator for large-dimensional covariance

matrices, Journal of Multivariate Analysis 88, 365–411.

32



Ledoit, O., M. Wolf, 2017, Nonlinear shrinkage of the covariance matrix for portfolio selection:

Markowitz meets Goldilocks, Review of Financial Studies 30, 4349–4388.

Litterman, B., 2003, Modern Investment Management: An Equilibrium Approach. Wiley, New

York.
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